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ABSTRACT 

Adaptive X-ray optics offer significant potential for new optical systems. An analysis and design tool for the opto-
mechanical design of adaptive X-ray optics is presented. The key issues addressed are: 

1) The processing of finite element nodal displacements for optical surface characterization is illustrated. 

2) The fitting of Fourier-Legendre polynomials to the radial sag or surface normal displacements of near cylindrical 
optics is presented. 

3) The use of 2D Legendre polynomials are presented as an alternative representation of mechanical displacements. 

4) The analysis of adaptive X-ray optics requires the solution of actuator strokes required to minimize surface RMS. 
Issues include stroke limits and surface slope error minimization.  

5) The number and placement of actuators can be optimized by using an embedded genetic selection algorithm.  

6) The mirror structure and mounts may be optimized to minimize the adaptively corrected surface error while still 
satisfying all structural requirements. 

7) The implementation of a Monte Carlo technique to predict the impact of random factors in the system such as actuator 
resolution or mount strain forces. 
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1. INTRODUCTION  
The design challenges to develop grazing incidence X-ray optics for modern systems such as the International X-Ray 
Observatory (IXO) are well known to be daunting.1 The ability to characterize results from mechanical analysis software 
tools and to transfer those characterizations to optical analysis software tools was a valuable asset to the design 
development of the Chandra X-Ray Observatory.2 A flow chart of this analysis process is shown in Figure 1.  SigFit is a 
commercial software tool from Sigmadyne which is used in the integrated opto-mechanical analysis of optical systems 
as shown in Figure 1.3,4 While SigFit has been in practice for the development of normal incidence optics, recent 
enhancements have been added to allow analysis of grazing incidence optics such as those used in X-ray astronomy. 
This paper discusses the methods and capabilities implemented in SigFit specifically with regard to passive and 
adaptively controlled grazing incidence optics. 

 
Optical

Analysis

Interpolated
Temperatures

Thermal
Analysis

Structural
Analysis

SigFit

Disp
lac

em
ents

Stre
sse

s
Temperatures

Result Files

Design 
Optimization 

Entries
Test Data

Printed 
Summaries

Optical
Testing

 
Figure 1. Opto-mechanic analysis flow 



 
 

 
 

2. PROCESSING OF FINITE ELEMENT DISPLACEMENTS 
In order to describe the deformed shape of a cylindrical optic as predicted by finite element analysis (FEA), the nodal 
displacement vectors must be processed into a form useable to describe the deformed shape. Figure 2 illustrates a 
deformed cylindrical optic with an undeformed node P and a corresponding displaced node P' as predicted by analysis 
such as FEA. In addition, the normal deformation and radial deformations of the original location P are shown as 
labeled. Notice that the displacement vector given by PP' is neither the normal nor the radial sag displacement of the 
deformed optic. The desired normal or radial sag deformations, which are the deformations commonly employed for the 
purposes of describing the deformed shape of the optical surface, must be computed from the displacement vector given 
by PP'. 
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Figure 2. Illustration of normal and radial deformation relative to the displaced node 
position as represented by FEA results. 

It can be shown that the normal deformation of the optic can be approximated to first order by simply taking the 
component of the FEA nodal displacement vector in the direction of the surface normal. The first order approximation of 
the radial sag deformation is somewhat more complicated as it involves the first derivative of the radial sag of the 
surface prescription with respect to the axial coordinate. The process of converting the FEA nodal displacement into the 
radial sag deformation is called axial correction as it incorporates the effect of axial displacement on the radial sag. 
While the method described in Figure 2 ignores the effect of azimuthal displacements, a generalization can be made to 
account for all three nodal translations predicted by FEA. In the case of axisymmetric optics, the effect of azimuthal 
displacement on the radial sag is generally of lower order than the effect of axial displacements. 

The need for axial correction is shown in the following example where an optic with a kinematic mount midway 
between the upper and lower edges is subjected to an isothermal temperature increase.  The low order deformation terms 
of average radial growth and cone have been subtracted.  The most significant remaining deformation of barrel shows an 
opposite sign with and without axial correction and is shown in  Figure 3.  This is illustrating that axial displacement 
causes an effective radial displacement and neglecting it leads to erroneous results.  The correction is, therefore, 
especially important with thermoelastic loads, which tend to have high axial growth compared to radial growth due to 
the nature of the geometry. 
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Figure 3.  Deformed plots of only radial deformation illustrating barrel distortion (a) 
without axial correction and (b) with axial correction. 

3. FOURIER-LEGENDRE POLYNOMIALS 
The use of Fourier-Legendre polynomials5 is a common means to quantify the deformed shape of a cylindrical optic. 
Fourier-Legendre polynomials are defined by Equation 1 where n is the axial wave number and m is the circumferential 
wave number. 
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Plots of several low-order polynomials appear in Appendix A. Fourier-Legendre polynomials (FLG) are similar to 
Zernike polynomials (ZRN) in several ways. 

1. n = axial wave number in FLG, n = radial wave number in ZRN. 
2. m = radial wave number in both FLG and ZRN. 
3. Both FLG and ZRN form an orthogonal set. FLG are orthogonal over the full cylindrical aperture of  

-1 < z < +1 while ZRN are orthogonal over a circle of unit radius. 
4. Both FLG and ZRN may be normalized to unit amplitude or unit RMS. 
5. Both may be fit to normal or sag displacement.  Sag for FLG is radial displacement while sag displacement for 

ZRN is axial displacement. See Figure 2 for an illustration of radial sag displacement. 
 

The coefficients of the Fourier-Legendre polynomial fit may then be used as input to an optical analysis model to allow 
optical performance predictions of the optic. 

4. LEGENDRE POLYNOMIALS FOR SEGMENTED OPTICS 
For segmented cylindrical optics, the deformation in each segment may be independent of other panels. Polynomials 
continuous over the full cylinder, such as FLG, will not represent a good fit to deformation data as they will not be able 
to capture the discontinuities introduced by the separate segments.  Legendre polynomials5 (LEG), on the other hand,  
may be defined over a single cylindrical segment.  Plots of low order LEG polynomials appear in Appendix B. LEG 
polynomials are similar to XY polynomials for conventional optics, except that: 

1. LEG form an orthogonal set, whereas XY do not. 

2. LEG may have an independent normalization for each domain variable . XY have a single normalization used 
for both domain variables. 



 
 

 
 

When applied to grazing incidence optics, LEG are fit with respect to the axial (Z) and circumferential (Θ) directions 
with an independent normalization of each.  The user may choose to fit surface normal (s = dn) or radial sag (s = dr) 
deformation. 
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In Figure 4 a segmented optic and a continuous optic with a circumferential gradient are compared.  When the 
continuous optic is fit with Fourier-Legendre polynomials through order (n=6, m=6), 99.7% of deformation is 
represented.  If the same fit is applied to the segmented optic, only 94.4% of the deformation is represented, missing 
5.6%.  When Legendre polynomials through order (n=6, m=6) are applied independently to each segment, the fit 
represents 99.98% of the deformation, missing only 0.02%. 

 

   
 (a) (b) 

Figure 4.  Deformation due to circumferential thermal gradient for (a) continuous 
optic and (b) a 6-panel segmented  optic. 

The coefficients of the Legendre polynomial fit may then be used as input to an optical analysis model to allow optical 
performance predictions of the optic. 

5. ANALYSIS OF ADAPTIVE X-RAY OPTICS 
SigFit’s adaptive analysis capability will solve for the actuator amplitudes required to minimize the surface error.6  
Actuator influence functions may be supplied through FEA results in the same manner as the disturbances to be 
corrected. Actuators included in adaptive control simulation may, therefore, be force or displacement type, either 
external or embedded within the optic or any influence that may be simulated in FEA and is linearly related to its 
controlling input, A.  The actuator inputs for best correction of the optical surface are computed by minimization of the 
mean square error function defined as, 
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where, 

N = the number of nodes, 
wi = weighting coefficient of node i, 
M = the number of actuator influence functions, 
ds′ i = surface deformation at node i, (radial or normal) 
Aj = actuator input for actuator influence function j, 
fji = surface deformation of actuator influence function j at node i. 

 

Taking partial derivatives of E with respect to each actuator input and setting each equal to zero leads to a linear system 
of M equations for M unknowns, 
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which allows for computation of the actuator inputs which minimize the error E. 

 
SigFit also offers an option to include slopes along with sag or surface normal translations in the minimization of surface 
RMS.  The user input is a slope fraction, c, whose value ranges from 0.0 (no slopes included) to 1.0 (no translations 
included).   Since displacements and slopes are in different units, slopes must be converted to displacement units. To 
convert radians to displacement units, SigFit multiplies the slopes by the average node spacing, L.  In SigFit, L is 
calculated from the optic surface area, a, and the number of nodes on the surface, N. 

 
N
aL =  (5) 

Let Θ i = x-slope at node i and Φ i = y-slope at node i, then the combined error to be minimized is: 
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Note that using slope data in the fit is only valid if the FE model predicts meaningful slope data.  Solid finite element 
models, for example, generally do not generate slope data.  Shell elements are often required to create valid slope output. 

In adaptive analysis, the user may specify limits on actuator motion or force level.  If selected, SigFit will find the best 
corrected surface RMS within the allowable actuator limits. SigFit first finds the unbounded solution according to the 
method presented above.  Then, if any of the corrected cases violates the actuator limits, those cases will be resolved 
with nonlinear programming techniques using the imposed limits.  

For orbiting telescopes, actuators that may fail during operation are not easily repaired, if possible at all. Actuator failure 
is easily analyzed in SigFit by deleting the failed actuator’s influence function from the solution set.   



 
 

 
 

6. ACTUATOR PLACEMENT OPTIMIZATION 
As part of an adaptive control analysis in SigFit, the user may optionally conduct actuator placement optimization.7 
When actuator placement optimization is selected, SigFit will invoke a genetic optimization algorithm8 to find the set of 
actuators chosen from a candidate actuator set which provides the lowest corrected surface RMS error. 

The overall flow of this optimization algorithm is shown in Figure 5. SigFit begins by randomly selecting a number of 
actuator layouts each containing the number of actuators specified by the user. This randomly selected set of layouts is 
called the initial population. The corrected surfaces associated with these actuator layouts are evaluated. Three 
operations are then performed on this initial population: mating selection, crossover, and mutation. The outcome of these 
three operations will result in a new population called a generation. This new population is then evaluated to find each 
actuator layout’s corrected surface error as was done for the initial population. As the optimization loops through 
generations the corrected surface error of each member of each new generation is compared to the lowest corrected 
surface error of all prior generations. When a more superior design is not found for a user specifiable number of 
successive generations, the optimization is terminated and the best actuator layout is passed to adaptive control 
simulation for final analysis. 
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Figure 5.  Flowchart of genetic optimization algorithm. 

Specifying candidate actuators in groups allows the user to enforce symmetry in the actuator layouts considered by the 
optimizer.   

As an example the genetic optimizer was applied to a single segment of the AXAF-like model above with two load cases 
of axial gradient and a circumferential thermal gradient.  A full set of 200 actuators was distributed evenly as candidate 
actuators as shown in Figure 6. 

   
 (a) (b) 

Figure 6.  Candidate actuator locations on 60 degree cylindrical mirror segment. 

Using the actuator placement optimization in SigFit the optimum sets of  20, 40, 60 and 80 actuators were found.  A plot 
of the residual error verses the number of actuators is given in Figure 7. 
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Figure 7.  Plot of residual error verses number of actuators. 

The locations of the actuators in the optimum actuator layouts for the 20-actuator case and the 40-actuator case are 
shown in Figure 8. Notice that the set of actuators found by the optimizer results in force pairs creating effective edge 
moments to control the bending caused by the thermal gradients. This corrective loading is consistent with fundamental 
elasticity theory. 

   
 (a) (b) 

Figure 8.  Optimum actuator sets for (a) 40 actuators and (b) 20 actuators. 

7. STRUCTURAL OPTIMIZATION 
SigFit offers two methods for structural optimization using optical measures as response quantities to limit or minimize. 
In one method, SigFit writes NASTRANa format DRESP2 equations in bulk data format.  These equations represent 
surface distortion RMS and peak-to-valley response with the users choice of rigid-body motion or any polynomials 
subtracted.  For example, the user may wish to create a mirror design which minimizes surface RMS after rigid-body 
motion and power have been removed, and still satisfy all other mechanical requirements.6 

                                                 
a NASTRAN is a registered trademark of the National Aeronautics and Space Administration. 



 
 

 
 

In a second method, SigFit is called as an external subroutine through the DRESP3 feature in MD Nastranb.  In this 
approach, SigFit can calculate and return any of the available responses as a quantity for optimization.  A common 
application of the DRESP3 generation feature is to optimize structural design to minimize the corrected surface of an 
adaptive optic.9 

8. VIBRATION ANALYSIS 
Even though commercial FE programs offer a full suite of vibration analyses, their output is not geared towards opto-
mechanical analysis.  If a random response analysis is run in an FE program, the resulting output is the 1-sigma response 
at each node.  This is an amplitude response with no phasing information.  Therefore, the results do not distinguish 
between behaviors that have very different effects on optical performance. An example of such behaviors is shown in 
Figure 9 where piston motion and a sinusoidal deformation cannot be distinguished from nodal random response results. 

   
 (a) (b) 

Figure 9.  The surface RMS of the piston motion shown in (a) is equal to the surface 
RMS of the elastic motion shown in (b) when performing random response within a 
commercial finite element program, which is unable to decompose such specific 
behaviors. 

SigFit, however, has a vibration analysis capability to rectify this shortcoming.  In SigFit, the modal eigenvectors of each 
surface are decomposed into average rigid-body surface motions and residual elastic deformation before the random 
response analysis is performed. The resulting random response outputs are the random response of the rigid-body 
motions and the random response of the surface RMS error, which impact the optical performance differently.  The 
structural design changes required to decrease either error is usually quite different. Therefore, it is useful to decompose 
the total error into its rigid-body and elastic components.  

For conventional optics, SigFit will calculate line-of-sight motion in static or dynamic environments.  In random 
analysis, the effect of jitter on MTF can be calculated.  This capability for grazing incidence optics is planned for a 
future release. 

9. MONTE CARLO ANALYSIS 
A new capability in SigFit is Monte Carlo analyses to allow users to understand the statistics of the optical performance 
as a function of the statistics of variable factors in the system. As currently implemented in SigFit, the unit variable 
changes may be represented by FEA result cases due to any perturbation that may be simulated in the FEA. The user 
specifies the distribution type as normal or uniform, the mean, and the standard deviation of each variable. SigFit 
performs the desired number of Monte Carlo realizations reporting the statistical results of the rigid-body errors, surface 
RMS errors, and fitted polynomials. 

An example application of a Monte Carlo analysis could be the study of mount variability effects on optical 
performance.  For an optic mounted on three points, unit moments at each mount could be applied as individual load 
cases.  Within SigFit, the user specifies the distribution and uncertainty of the mount moments.  SigFit will perform the 
Monte Carlo analysis and provide the statistics on surface RMS, rigid body motion and polynomial magnitudes. A 
similar application is to understand the effect of adaptive control actuator resolution by using the influence function 
predictions as variables. An example is presented below using the optimum actuator layout with 40 actuators presented 
in Section 6. A resolution of 1.0 mN at each force actuator in the layout was applied with uniform distribution. A Monte 

                                                 
b MD Nastran is a registered trademark of MSC.Software Corporation. 



 
 

 
 

Carlo analysis with 1000 realizations was performed to obtain the statistics summary presented in Table 1 and the 
cumulative probability density shown in Figure 10. 

Table 1. Statistical summary of surface RMS of 40actuator adaptive segment due to 
force actuator resolution. 

Surface RMS Statistical Result Value 
Mean 0.065 nm 
90% Bound 0.13 nm 
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Figure 10. Cumulative probability density vs. surface RMS error for 40-actuator 
adaptive segment due to force actuator resolution 

10. CONCLUSION 
Through careful treatment of the nodal displacement predictions from FEA and use of polynomial fitting, the 
deformations of grazing incidence optical surfaces may be characterized for subsequent optical analysis. Either the 
Fourier-Legendre or Legendre polynomial set may be chosen based on the system architecture. Future development of 
this capability will include the employment of array data and power spectral density models to allow characterization of 
higher frequency deformations as might be caused by local mount effects.  
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Appendix A:  Low Order Fourier-Legendre Polynomials 

(N=axial wave number, M=circumferential wave number) 
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