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 ABSTRACT

The development of the optimum locations of actuators for an adaptive optic has in the past been a manually iterative
process. A more automated yet efficient method is desired to quickly develop actuator layouts and the associated optical
performance. A genetic design optimization algorithm is developed and implemented in software. The method is then
demonstrated on an adaptive optic to show how it can be used to develop optimum actuator layouts for a fixed number of
actuators or to conduct design trades in choosing the number of actuators.

Keywords: Finite Element, Optimization, Opto-mechanics, Adaptive, Deformable

1. INTRODUCTION

The development of the optimum locations of actuators for an adaptive optic has in the past been a manually iterative
process. A more automated yet efficient method is desired to quickly develop actuator layouts and the associated optical
performance. Such a method must be able to consider multiple disturbances cases for which correction is desired and must
allow control over the number of actuators allowed. A genetic design optimization algorithm is developed and implemented
in SigFit1 since the capabilities of this software already include simulation of adaptive control. The method is then
demonstrated on an adaptive optic to show how it can be used to develop optimum actuator layouts for a fixed number of
actuators or to conduct design trades in choosing the number of actuators.

2. OVERVIEW OF GENETIC ALGORITHMS

2.1 What are genetic algorithms?

Genetic algorithms are very robust optimization methods.2 Their design, if implemented correctly, enables them to find
global optimums even in design spaces containing many local optimums. The basic method can be broken up into the
following operations: (a) initial population generation, (b) fitness evaluation, (c) convergence evaluation, (d) mating
selection, and (e) crossover and mutation. The population at any time during the process is a finite set of designs currently
under consideration. Each design in the population, called an individual, is defined by a series of binary digits called a
chromosome. The chromosome is simply a string of 1’s and 0’s which are interpreted to be a description of a physical design
in some fashion. The sequence of five basic phases listed above are performed repeatedly to develop new populations called
generations. The process ends when the convergence evaluation determines that production of more generations is no longer
beneficial. The optimum is the individual with best performance, or fitness, over all individuals considered in the process.

2.2 Why a genetic algorithm?

Before developing a genetic optimization method for finding optimum actuator layouts, one might be tempted to suggest that
it would be easier to use a full permutation analysis in which all possible arrangements of actuators are considered. For the
purposes of testing the genetic algorithm such a routine was written to find the true global optimum and to understand the
entire design space by a full permutation method. With this information about the entire design space we are able to assess
the effectiveness of the genetic algorithm. However, while it is tolerable to use this method on test cases used to validate the
effectiveness of the genetic algorithm, use of this method for actual problems is not desirable since the genetic algorithm is
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consistently able to find the global optimum in a small fraction of the time (seconds) that the full permutation run takes
(hours or even days for large problems).

3. GENETIC ALGORITHM FOR ACTUATOR PLACEMENT

The implementation of a genetic algorithm to the application of adaptive optic actuator selection requires special
considerations but the basic method is the same as that found in the referenced literature. A finite element model of the optic
to be analyzed is constructed for the purpose of computing actuator influence function and operational disturbance
predictions. A set of candidate actuator locations is selected at locations where actuators could be placed. The finite element
model is then exercised to compute the optical surface nodal displacements for all of the candidate actuator influence
functions and the operational disturbances.

3.1 Definitions

As actuator layouts are developed within the algorithm, the selections of
actuators in each layout are made such that the desired symmetry in the
actuator layout is maintained. In addition, a user specifiable number of
actuators is preserved, and a set of “always present” actuators is always
included. The symmetry in each actuator layout is maintained by
allowing the user to define links between the inclusion of slave actuators
with the inclusion of master actuators. Figure 1 shows an example of an
adaptive optic with candidate actuator locations. The master actuators
are shown in solid black while the slave actuators are shown in gray.
Some of the master and slave actuator links are shown with alphabetic
labels. For example, if master actuator “A” is included in a particular
actuator layout then the five other slave actuators labeled “A” are
included in the layout as well. The set of a master actuator and its
associated slave actuator is called a variable group. With the
requirement that all groups must contain the same number of actuators,
the number of actuators is maintained by including only a user specified
number of groups in each actuator layout. Separately the user may
specify a set of actuators which must always be included. An example of
such a set of actuators would be three displacement actuators to mount a
force actuated mirror. This set of actuators is called the fixed group.

3.2 Initial population generation 

An initial population of an even number of individuals is randomly selected. Measures are taken to make sure that all
individuals have only the number of variable groups specified by the user. The included variable groups are recorded for each
actuator by a chromosome which has a digit length equal to the number of candidate variable groups. With each digit
associated with a particular variable group, a “1” indicates the variable group is included in the individual while a “0”
indicates that it is not. The number of individuals in the initial population is a user specifiable quantity and can affect the
success of the optimization process.

3.3 Fitness evaluation

Once the initial population is generated a measure of performance is computed for each individual. This measure is called the
fitness. For adaptively corrected optics the fitness is chosen to be the corrected surface error. The adaptively corrected surface
error is computed for each individual by methods available in the literature.3 Before each individual’s fitness is computed, a
check is made to determine if we have already evaluated the fitness of the same individual. If it has already been computed, it
is simply recalled from memory instead of performing a duplicate adaptive control simulation. This is done to increase the
efficiency of the process.
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Figure 1: Example adaptive optic with
candidate actuator locations. The master force
actuator candidate locations are shown with
black circles, the slave force actuator candidate
locations are shown with gray circles, and the
displacement actuators are shown with white
triangles.



3.4 Convergence evaluation

Once the fitnesses of the current generation have been found, they may be compared to prior generations to evaluate
convergence. There is considerable flexibility in how this task is executed. For our algorithm the user is able to specify
relative and absolute convergence criteria to be met over a user specifiable number of generations. The absolute and relative
changes in the best known fitnesses are recorded between successive generations. If either of these changes are less than the
user specified values, the process is stopped and the best known fitness and associated individual is reported.

3.5 Mating selection, crossover, and mutation

If convergence has not been achieved then members of the current generation are selected for mating. The number of
members of the current generation which are selected for mating is the same as the number of individuals in the population.
The selections are made by a random process weighted by the relative fitnesses of all of the individuals. The weighting factor
used for each individual is given in Eq. (1),
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where, Wi is the relative weighting factor of the ith individual, Xi is the corrected surface RMS error of the ith individual, and
N is the number of individuals in the current generation. The members of the current generation which are chosen for mating
are stored in a mating pool.

Once the mating pool is generated, crossover is performed. To perform crossover members of the mating pool are taken in
sequence two at a time. The chromosomes of each pair are scanned and compared gene by gene. Unlike genes are exchanged
between the chromosomes with some user specifiable probability. This crossover is called primary crossover. If a gene is
found to be the same between the two mates, the gene is skipped and the next gene of the two mates are examined. Notice
that the primary crossover operation adds an actuator group to one individual while subtracting it from another. Therefore, a
companion crossover operation must be performed on any of the gene sites which will rebalance the number of variable
groups in each individual. This is done by searching for all genes sites, excepting the primary crossover site, which, if
exchanged, will rebalance the number of variable groups in the individuals to the correct value. One of these sites is chosen at
random and companion crossover is performed. If no genes sites are found which will rebalance the number of variable
groups the primary crossover operation is reversed. The process continues with examining the next gene for primary
crossover until the end of the chromosomes are reached. The resulting two chromosomes are two individuals in the next
generation. 

This process is performed for the entire gene pool two individuals at a time until a new generation has been created. It is in
this operation that the requirement of a even number of individuals in a population originates.

Once the new generation is complete a mutation operation is performed. Each gene in each individual is examined and is
reversed with a small probability. If a gene is successfully chosen for mutation it is called primary mutation. Then as was
done in the crossover operation, a companion mutation operation is performed to balance the number of included variable
groups. Once mutation is complete, the cycle is restarted in fitness evaluation  with the new generation.

4. EXAMPLE

To illustrate the effectiveness of the genetic algorithm a simple example was developed.

4.1 Problem definition

The optic for which an optimum actuator layout is to be determined is shown in Figure 2 with dimensions. The optic is a
lightweighted mirror comprised of a triangular-cell core sandwiched by two faceplates. The mirror is supported on three stiff
displacement actuators. A set of 210 candidate low stiffness force actuator locations were selected to be at strut intersections



and are shown in Figure 3. These
actuators are intended to be push-
pull style force actuators acting
along the optical axis. In order to
maintain symmetry, 35 master
candidate locations were chosen at
the locations shown with black
circles while the remaining
locations were defined as slave
candidate locations. This created
35 variable groups of six locations
each. It was desired to find the
optimum layout which uses a total
of 18 actuators. Therefore, only
three variable groups were allowed
in any actuator layout considered
by the genetic algorithm. The three
displacement actuators shown with
black triangles were defined as a
fixed group present in all layouts.

Three independent disturbance
conditions were considered
separately and then combined as a
fourth case to demonstrate the flexibility and power of the genetic algorithm in finding optimums. The first disturbance
condition is a gravity load associated with moving the mirror to a zero gravity operating environment as would be expected
for an orbiting telescope. The second disturbance is an isothermal drop in temperature of 20°C while the third disturbance is a
front-to-back temperature difference of 0.15 °C.

4.2 Benchmarking the problem by full permutation

In the evaluation of an optimization method’s effectiveness, it is
advantageous to compare the results of the optimization
algorithm with knowledge of the entire design space. In many
problems this is impossible or prohibitive because the feasible
design space contains either infinite designs or a number of
designs that makes complete evaluation of the design space
prohibitive. Yet, with 35 variable groups it is a tolerable task to
compute the corrected surface error of every actuator layout of 18
actuators for each of the four load case conditions. The genetic
algorithm subroutine in SigFit was replaced by a subroutine
which finds and evaluates every actuator layout. For this 35
candidate variable group problem with three allowable variable
groups, the full-permutation analysis requires consideration of
6545 layouts and can be run in 28 minutes on a Pentium 4 3.2
GHz processor with 1 GB of RAM.

The results of the full permutation analyses are shown in the four
histogram plots in Figure 4. Each bar represents the number of
actuator layouts having a corrected surface RMS error within the
5 nm band below the label on the horizontal axis. For example, a
bar above the label 50 shows the number of layouts having corrected surface RMS errors between 45 nm and 50 nm. The
goal of the genetic optimizer is to find the actuator layouts within the left-most bar of the histogram. Since there are relatively
few designs in the left-most bar of each histogram as compared to the layouts in the full-permutation, this will be a discerning
test of the genetic optimizer.
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Figure 2: Drawing of test model lightweighted mirror.

Figure 3: Candidate actuator layout.
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Figure 4: Histogram plots of all 6545 designs with 18 actuators showing number of actuator layouts vs.
corrected surface RMS error in nanometers. Each bar represents a 5 nm surface RMS error bandwidth. The
last bar represents the number of designs with corrected surface RMS errors above the last number shown
on the horizontal axis.

4.3 Results from the genetic algorithm

The genetic algorithm was executed four times for each load case with the parameters shown in Table 1.

Table 1:  Genetic Algorithm Parameter Values
Parameter Value
Population Size 30
Probability of Crossover 0.6
Probability of Mutation 0.0333
Maximum Relative Convergence 0.01
Number of Generations Maximum Relative Convergence Must be Met 4
Maximum Absolute Convergence 0.1
Number of Generations Maximum Absolute Convergence Must be Met 4

Table 2 shows the results of four genetic optimization executions compared to the global optimum and global average found
from the full-permutation analysis for the 35 variable group problem defined in Section 4.1. Notice that since the initial
population generation and subsequent crossover and mutation operations are random processes, the result of each
optimization varies from run to run. However, in comparison to the histogram plots in Figure 4, the resulting optimum
actuator layouts are hardly random results. The optimums are consistently very close to the global optimum. In fact, the



results from all analyses are consistently superior to 99% of all possible actuator layouts, and the best of the four executions
for each load condition are all within the left-most bar of the corresponding histogram in Figure 4.

Table 2: Corrected Surface RMS Errors of Layouts found by Genetic Optimization Compared to Global Results

Operational Disturbance
Genetic
Result

#1

Genetic
Result

#2

Genetic
Result

#3

Genetic
Result

#4

Best
Analysis
Result

Global
Optimum

Global
Average

Gravity
Variation 8.4 nm 9.1 nm 10.1 nm 8.5 nm 8.4 nm 7.0 nm 47.8 nm

20 °C Isothermal
Temperature Drop 10.8 nm 9.5 nm 10.6 nm 12.2 nm 9.5 nm 6.1 nm 25.9 nm

0.15 °C Front-to-Back Axial
Temperature Difference 17.7 nm 18.1 nm 13.9 nm 15.6 nm 13.9 nm 10.6 nm 36.6 nm

Combination of
Above 27.2 nm 26.6 nm 24.2 nm 25.4 nm 24.2 nm 21.6 nm 57.3 nm

To improve on the performance of the genetic algorithm to
find a truly global optimum, the process parameters can be
adjusted. For example, the population size may be increased
or the number of generations over which the convergence
conditions must be met may be increased.

The actuator layouts for the optimum found by the genetic
algorithm for each load case are shown in Figure 5.  Each
optimum actuator layout is arranged to correct for its given
load condition. The layout in Figure 5(a) best corrects for the
gravity shift by a layout which can correct a large amount of
trefoil deformation. For the axial thermal gradient case the
optimum actuator layout is best able to generate edge
moments which one would expect from the theory of
elasticity. The arrangement for the combined loading is a mix
of the arrangements for the individual loading conditions.

4.4 Number of actuators trade study

If it is desired to understand the minimum  number of
actuators to use in an adaptive optic application, the genetic
algorithm can be used to develop a useful design curve for
this purpose. The genetic algorithm was used to find optimum
actuator layouts with various numbers of allowed variable
groups for the combined loading condition. The resulting
design curve shown in Figure 6. A trade study of this type is
very useful to find minimum number of actuators required to
achieve a desired corrected surface performance. For
example, if the requirement for this mirror is to correct to
within 40 nanometers of surface RMS, then an arrangement
using only 12 actuators would reduce the weight compared to
an 18 actuator design.

4.5 Solving larger problems

As was mentioned above, the task of running full permutation
optimization in lieu of a more sophisticated algorithm
becomes increasingly prohibitive and the usefulness of the
genetic algorithm becomes more clear. For the particular
application at hand Equation 2 gives the expression for the
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Figure 5: Optimum actuator layouts found by the
genetic algorithm for deformations generated by (a)
gravity shift, (b) isothermal shift, (c) axial gradient, and
(d) combined loading.
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Figure 6: Corrected surface error vs. allowed actuators.
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where, NT is the total number of actuator layouts with Na allowed groups and Nv is the number of candidate variable groups.
With Nv equal to 35 and Na equal to 3, there are 6545 allowable actuator layouts out of the 1 to 235 = 34,359,738,368 number
line representable by the 35 digit long chromosome. The number of allowable actuator layouts increases by an order of
magnitude for every additional allowable group as shown in Figure 7(a) while the number of chromosomes over which the
allowable actuator layouts must be found increases by a factor of two as shown by the dashed curve in Figure 7(b). Both of
these quantities contribute to dramatic increases in computational expense in evaluating the full permutation of the design
space for this problem. 
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Figure 7: Effects of number of allowed groups and number of variable groups on full permutation problem size.
(a) Number of candidate individuals vs. number of allowed variable groups with 35 candidate variable groups.
(b) Number of candidate individuals (solid curve) and number of chromosomes to search (dashed curve) vs.
number of variable groups with 3 allowed variable groups.

The test case described above has been sized such that it is large enough to be meaningful, yet, small enough that knowledge
of the entire space is attainable. But as the candidate variable group size is increased this full-permutation evaluation time
increases quickly. Each added variable group doubles the analysis time. Therefore, consideration of candidate actuator
locations at all core strut intersections of the example mirror requires 40 groups and about 15 hours of full-permutation
analysis time. If the candidate actuator locations are not in discrete spots but instead continuously variable, then the number
of variable groups desired may be much higher in order to obtain more precise locations of the actuators in an optimum
layout. Yet, for this considerably larger optimization problem the genetic optimizer was found to produce a repeatable
optimum in a few seconds per analysis. It is in these full-permutation tests compared to the genetic analysis tests that the
efficiency of the genetic optimizer is fully demonstrated.

5. SUMMARY

The genetic algorithm developed for finding the optimum locations for a fixed number of actuators has been demonstrated to
be a powerful and time saving tool in the development of the designs of adaptive systems. The algorithm was executed on a
test model for which the entire design space was known. The genetic algorithm quickly found actuator layouts with
performances within the top 1% of all possible layouts. It was then demonstrated that this efficiency makes it a simple matter
to perform design trades that aid in choosing the best number of actuators.
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