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ABSTRACT 

 
Brittle materials such as glass do not possess a single characteristic strength.  The strength of the material is 
dependent on the distribution of cracks or surface flaws. These factors, coupled with the inherent brittleness 
(cause of catastrophic or rapid failure) mean that extremely conservative design approaches are typically 
used for optical elements made of glass. Determining a design allowable for glass elements is critical for 
optical systems using relatively brittle glass types or for optical elements subject to relatively high stress 
levels.  Rule-of-thumb tensile design strengths are typically at 1000 - 1500 psi for nominal glass materials. 
This neglects the specific glass composition, subcritical crack growth, surface area under stress, and nature of 
the load - static or cyclic. Several methods to characterize the strength of optical glass are discussed to aid 
engineers in predicting a design strength for a given surface finish, glass type, and environment.  These 
include estimating fracture toughness for a given glass, predicting inert strength using material test data, and 
lifetime predictions accounting for static fatigue and cyclic loading.  Determining a design strength for a 
spaceborne optical element is discussed. 
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1. INTRODUCTION 
 
The strength of glass is governed by the random distribution of the size, orientation, and location of the 
surface flaws in relation to regions under stress. The surface flaws are commonly created during the grinding 
and finishing operations of the optical substrate.  Due to the scatter in the flaw size, the strength of glass is a 
function of the size of the glass component. Hence, there is no deterministic strength for brittle materials 
(unless the flaws are extremely uniform).  These flaws or cracks propagate under tensile loads to a critical 
value and then experience uncontrolled crack growth until the part physically fractures.  
 
A key in maximizing the strength of a glass component is to minimize the surface flaws during the 
manufacturing process. This is commonly achieved through a controlled grinding and polishing process that 
aims to decrease the depth of the surface flaws after each step of the operation. Removal rates are designed to 
remove a depth of material that is equal to or greater than the maximum flaw depth1.  The maximum flaw 
depth may be approximated as three times the average diameter of the grinding particle. By using special 
finishing techniques, very high strengths in glass may be obtained.  For example, chemical polishing with 
hydrofluoric acid have produced tensile strengths over a 1,000,000 psi. Typically, however, reducing the 
flaw depth below 0.001” is difficult using conventional techniques. 
 
For glass components subject to stress levels that exceed a 1000 psi or when using brittle glasses 
characterized by comparatively low fracture toughness, material strength testing is necessary to characterize 



the strength properties of the material.  Material testing enables the strength to be characterized using a 
statistical distribution (most common is the Weibull distribution) and determines the rate at which cracks 
grow within a material.  This data is then used to develop a design strength and predict the time to failure. 
 

2. FRACTURE TOUGHNESS 
 

A fracture mechanics approach to the failure of brittle materials involves the growth of surface flaws or 
cracks under tensile loads. The resistance to flaw growth in a material is known as the fracture toughness or 
the critical stress intensity factor, KIC.  A comparison of the fracture toughness of several glass types are 
shown in Table 2.1.  Failure occurs when the stress intensity factor, KI, which describes the level or intensity 
of the stress distribution just ahead of the crack tip, exceeds the fracture toughness of the material,  
 
KI  > KIC.                                                                                                                                                                                                                  (2.1) 
 
The stress at the tip of the crack is concentrated due to the crack geometry and the lack of plastic 
deformation.  When the stress value exceeds the strength of the bonds in the glass molecular network, crack 
propagation occurs.  The stress intensity may be computed for a given crack size and geometry using 
Griffith's law expressed below 
 

aYK I                                                                                                                                       (2.2) 
 
where Y is a crack geometry factor,  is the nominal stress, and a is the flaw size.  A design strength may be 
estimated based on an assumed flaw size with an appropriate factor of safety.   
 
Fracture toughness data is not always available for the glass types in a given optical instrument.  However, 
the fracture toughness for common optical glasses (Schott, Ohara, Hoya) may be determined using the 
manufacturers published data on lapping hardness2.  Lapping hardness is defined as the volume of material 
removed under a predefined set of processing conditions including pressure, velocity, coolant, and abrasive.  
Rates of removal, surface roughness, and subsurface damage are a function of a glass's mechanical properties 
including the elastic modulus, hardness, and fracture toughness.  Lapping hardness may be derived from the 
mechanical properties controlling elastic deformation (elastic modulus, E), resistance to flow (hardness, Hk), 
and resistance to cracking (fracture toughness, KIc) through a combined figure of merit given by the 
following  
 

 12/236/7 / kIc HKE .                                                                                                                                        (2.3) 
 
The glass manufacturers each publish data on the lapping hardness of their glasses; Schott expresses this data 
as a height reduction, h - (see Schott Technical Information Bulletin No. 4), Ohara as an Ohara factor, Aa, 
and Hoya as a Hoya factor, FA.  Using this data and the curves that have been published showing the 
relationship between the above figure of merit and lapping hardness, fracture toughness may be estimated.   
 

3. STATIC FATIGUE 
 
A phenomenon that complicates the computation of a design strength is that glass materials are susceptible to 
subcritical crack growth in monotonic tension due to the influence of moisture e.g. under a constant state of 
stress, the size of the crack increases until the stress intensity at the crack tip exceeds the fracture toughness 
and failure occurs.  This is known as stress corrosion and is a form of static fatigue.  (In this definition, 



fatigue refers to the degradation of mechanical properties with time.  Later dynamic fatigue, referring to the 
effects of cyclic mechanical loading, is discussed.) Stress corrosion is due to the reaction of the glass material 
with water at the crack tip.  Even small amounts of water vapor can markedly reduce the lifetime of the 
component under static load conditions.  Thus the strength of glass is a function of the humidity level and the 
time in which the component has been loaded.  Generally, the more moisture that is present, the greater the 
reaction resulting in greater crack growth.  Stress corrosion and the effects of moisture may be measured by 
loading test specimens under a constant stress and using various moisture levels and recording the time to 
failure.  These are known as  
 

Fracture Toughness, KIC  psi in 
Fused Silica 674 
BK7 774 
SF5 519 
SK16 710 
LaK10 865 
F2 500 
SF58 346 

 
Table 2.1 Variation in Glass fracture toughness. 

 
time-to-failure studies. For a constant moisture level, the time-to-failure is typically shown to decrease as the 
stress in increased.  Fracture strength versus load duration curves may be determined by varying the load 
duration.  These curves are often normalized using the inert strength of the glass material - inert strength 
refers to the strength sans the effects of stress corrosion. This is achieved by measuring the strength of test 
specimens cooled to temperatures of liquid nitrogen where the effects of water are negated.  
 
Time-to-failure studies are often time consuming and an accelerated method known as dynamic fatigue 
testing is often employed.  In this case, the stress applied to the test specimen is not constant but applied at a 
constant rate.  When the stress rate is fast, there is no time for crack growth and the specimen fails at a high 
stress.  Conversely, when the stress is applied slowly, the crack has an opportunity to propagate and the 
specimen fails at a lower stress.  The average stress at failure is often plotted versus the rate of stress using a 
log-log scale.  The slope of the line characterizes the fatigue resistance of the glass and is known as the 
fatigue resistance parameter.   
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Figure 3.1 Regions of a typical V-K curve 

 
Crack growth may also be studied using controlled growth of well-defined surface flaws.  The crack velocity 
(V) is measured and plotted versus the stress intensity at the crack (KI) on a semilog scale known as the V-K 



curve.  A schematic of a typical V-K curve for glass is shown in Figure 3.13.  The various modes of crack 
propagation are shown; crack propagation is initiated once the stress intensity at the crack tip exceeds a given 
threshold; once the threshold has been reached, crack propagation in region I is a function of the reaction of 
the surface flaw with moisture; region II represents a transition region where part of the crack region is 
reacting to moisture and part is not; unstable / uncontrolled crack growth occurs in region III, and water is 
unable to react with the crack due to the speed of propagation.  Once the stress intensity reaches the fracture 
toughness of the material, KIC, the part fractures.  Region I is of primary interest since this is the region of 
stable crack growth. The slope of this line is another measure of the fatigue resistance parameter.   Crack 
propagation in region I for several glasses, based on data from Weiderhorn4, is shown in Figure 3.2.  
 

 
 

Figure 3.2 V-K Curves for SF1, BK7, and Fused Silica (Region 1) 
 

It should be noted that for crack growth due to static fatigue, failure is considered when the stress intensity at 
the crack tip exceeds the value of the materials fracture toughness.  However, for certain brittle solids it has 
been shown that as the crack size increases the stress intensity at the crack is reduced5 .  A material that 
experiences this phenomenon is known as toughened.  Often an effective stress intensity is used such that the 
nominal stress intensity, KI, is reduced by a shielding component, Ks, expressed as 
 

sIeff KKK                                                                                                                                               (3.1) 

 
4. INERT STRENGTH AND TIME-TO-FAILURE  

 
Predicting design strength provides the basis for which the optical components and mounting configuration 
may be designed such that failure does not occur over the operational lifetime of the instrument.  Three 
approaches based on material strength testing of test specimens are discussed below.  The first method 
determines the inert strength of the component as represented by a Weibull statistical distribution.  In this 
approach, the statistical parameters representing the component are determined by scaling the test specimen 
statistical parameters based on the surface area under stress. A design strength may then be determined based 
on an acceptable probability of failure.  This method assumes no crack growth occurs during the life of the 
component. The second approach is based on dynamic fatigue testing which is used to predict the lifetime of 
a component assuming subcritical crack growth occurs during the service life (i.e. stress corrosion).  The 



third method combines the previous two approaches and develops time-to-failure curves as a function of 
probability of failure. 
 
4.1 Inert Strength 

 
The strength and probability of failure of actual components may be extrapolated from test specimen data 
using Weibull probabilistic methods. This theory-based procedure assumes that the surface flaws that limit 
the strength is the same for the specimens as it is for the components and that the surface flaw population is 
unvarying with time in service (i.e. no static fatigue). The manner in which this is achieved is by fitting a 
two-parameter Weibull distribution to 30 or more test specimen strength data. The probability of failure for a 
given test specimen may be determined for an applied stress, , as expressed below 
 
























m

oePf




0.1                                                                                                                               (4.1) 

 
where Pf is the probability of failure, o is the characteristic strength (63.2% of the specimens fail at this 
stress level) and m is the Weibull modulus, an indicator of the scatter of the data.  Once the strength of the 
glass has been statistically characterized, probability of failure versus tensile stress curves may be created.  
These curves allow a design strength to be selected based on a chosen probability of failure.  The probability 
of failure versus tensile stress is shown for several Schott glasses in Figure 4.1. The data used in this figure is 
based on a double ring test using a surface area of 113 mm2 at room temperature6.  The surface of the glass 
specimens were polished using a loose silicon carbide grain with an average particle size of 9 um.  
 

 
Figure 4.1 Probability of Failure Curve for Several Schott Glasses 

 
Since the strength of glass is a function of the surface area that is under stress, the test specimen strength 
distribution may be used to derive the strength distribution of the actual glass component using a ratio of the 
surface areas under tensile stress. An effective surface area, Aeff, may be computed for a component with a 
varying stress field such as that computed via finite element analysis using the following relationship 
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where σ represents the surface tensile stress over area dA, and σmax is the maximum surface tensile stress. 
The characteristic strength of the component is then computed by7 
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The above relationship allows the characteristic strength of the actual glass component to be expressed 

and hence the component strength is statistically characterized since the Weibull modulus is assumed 
constant.  For test specimen data to be extrapolated to component geometries, the surface of the test 
specimens must be prepared exactly as the component.  This ensures that the Weibull modulus used in the 
scaling law is constant between the test specimens and component.  This general method, while not exact, 
offers many benefits as it is often impractical to test actual components in their true loading condition in 
sufficient quantity to yield reliable results.  The method is adequate for multi-axial, tensile loaded specimens, 
provided that the second or third principal stresses are significantly less than the principal tensile stress.  If 
this is not the case, then more sophisticated analyses that take into account the effect of multi-axial tensile 
stresses on flaws are required. 
 
4.2 Lifetime & Time-to-Failure Predictions 

 
A more detailed and comprehensive method to predict the lifetime of a glass component takes into account 
the reduced strength of the material over time due to subcritical crack growth.  This requires knowledge of 
how cracks grow for a given material and may be obtained using the methods discussed in Section 3. From 
this data, analytical expressions exist to compute the total time-to-failure, ts, for a component under a 
constant static stress with a known surface flaw as expressed below8 
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where KIi is the initial stress intensity factor, and V is the crack velocity.  For crack geometries consistent 
with those found on glass surfaces, and assuming an exponential from of the V-K curve,  
 

K
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4.5) 

here o and  are constants, then the time-to-failure may be expressed as w
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he V-K curve is also commonly expressed as a power law, T

 
V nAK                                                                                                                                                        (4.7) 
 



where A and N are constants.  This yields a second expression for the time-to-failure9: 
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sing the above expressions, time-to-failure curves may be developed based on an initial flaw size.  The U

initial flaw size may be estimated using the inert strength of the material from which an initial KIi is 
determined. Curves may be drawn for different flaw sizes as illustrated in Figure 4.2 or to compare different 
materials as shown in Figure 4.3.  
 

 
      Figure 4.2 Time-to-Failure vs. Initial Flaw Size 

 

 
                                     

 Figure 4.3 Schott Glass BK7 and SF1 Time-to-Failure Curves                                        



 
 

.3 Lifetime Prediction and Probability of Failure 

esign strength diagrams may be created by coupling the methods discussed in Section 4.1 & 4.2.  This 

he 
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yields time-to-failure versus tensile stress curves as a function of probability of failure.  The initial flaw 
distribution as characterized by a Weibull distribution (Section 4.1), allows the initial stress-intensity at t
crack tip to be estimated by,  
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here   is the stress at fracture.  Using the stress at fracture, IC, for  in equ. (4.1) and solving for IC, and w IC

then substituting into equ. (4.9) yields the following relationship10: 
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he initial stress intensity value is then used in the time-to-failure equations to develop a family of design T

curves.  These design curves account for sub-critical crack growth and enable a design strength to be selected 
based on the required level of safety as shown in Figure 4.4. 
 

 
 

Figure 4.4 BK7 Design Strength Curve 

The values used to compute the curves in Figure 4.4 were based on a Weibull characteristic strength of 10.2 
ksi, a Weibull modulus of 30.4, a fatigue resistance parameter of 23.6, and a power law coefficient, A, of 
128.   

 



5. CYCLIC FATIGUE CRACK GROWTH 
 

Prior to the recognition that brittle solids exhibit fatigue effects, a method to compute the time-to-failure due 
to cyclic loading as a functi 11.  This approach assumes 
that the cyclic stress field may be represented as a su mation of incremental static loads, the compressive 

on of the static crack growth curves was developed
m

nature of the load has no effect on crack growth, and the static and cyclic failure mechanisms are equivalent.   
 
The time-to-failure due to cyclic loading, tc, is expressed below 
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where ts is the t
The factor g-1 is given analytically and graphically for various cyclic loads as a function of the average stress 
nd the amplitude of the cyclic load.  For the special case of a sinusoidally varying load with an average 

ime-to-failure under a static stress, s is the static stress, and a is the average cyclic stress.  

a
stress of zero, g-1 is given as  
 





  ....

32

1

4

1
12

2

1

nn
ng  .                                                                                                               (5.2) 

Thus, design strength curves may 
 

owever, it has been shown in the past several decades that crack growth under cyclic mechanical loads 
d 

onditions.  Identifying actual fatigue effects in brittle solids as compared to their metal counterparts didn’t 

 
be developed such as those in Figure 4.4 accounting for cyclic loading.   

H
(fatigue crack growth) for brittle materials is much more complicated than crack growth under static loa
c
come to acceptance in the community until the late 1970’s.  Fracture surfaces for brittle solids due to static 
and cyclic loads are very similar as contrasted to the dislocation activity of metals whereby methods of 
fractography are able to identify the failure mechanism by interpreting the failed surfaces i.e. brittle solids 
experience relatively little plasticity.  This coupled with the high precision and expensive testing along with 
the need to statistically characterize the behavior due to the high degree of scatter in the results, helps explain 
why the fatigue behavior in brittle solids lags significantly behind the knowledge of fatigue behavior of 
metals. 

 Maximum Stress Intensity, Kmax

d
a

/d
N

 (
L

o
g

)

Cyclic Loading Equivalent 
Static Load

 
 

Figure 5.1 Crack growth comparison of cyclic loading to equivalent static loading per cycle 



 
A true fatigue effect has been identified in brittle solids leading to a decelerated or accelerated crack growth 
under cyclic loads as compared to static loads.  It has been shown that during repeated tension-compression 
cyclic loading whereby the crack surfaces are repeatedly placed in physical in contact during the 
compression stroke of the cycle, that crack growth may be accelerated12.  See Figure 5.1.  Conversely, crack 
growth may be decelerated by such factors such as debris particles wedging between the contact surfaces.  
The beneficial and detrimental effects that cyclic loading have on time-to-failure is shown in Figure 5.2. 
An additional note regarding static and cyclic loads is that fatigue in metal materials is governed by the range 
of the stress intensity, ΔK, achieved during cyclic loading as given by the Paris equation:   
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where da/dN is the crack propogation rate per fatigue cycle.  For brittle materials, a modified Paris Law has 
been pro  stress 

tensity factor, and ΔK, the difference between the maximum and minimum stress intensity during a cyclic 
posed for cyclic crack growth that expresses crack growth as a function of Kmax, the maximum

in
load, given below13:   
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where g is known as the static crack growth exponent and q as the cyclic crack growth exponent.  It has been 

hese studies have 
elped show that the mechanisms responsible for fracture under static and cyclic loading are considered the 

same. 

shown for several brittle solids that g is typically much larger than q indicating that crack growth depends 
primarily on the maximum value of the stress intensity factor, Kmax, and not on ΔK.  T
h
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Figure 5.2 Beneficial and detrimental effects of cyclic loading on time-to-failure 

 
6. DESIGN STRENGTH EXAMPLE 

 
The above methodology was applied to determine a design strength for a BK7 Schmidt corrector plate as part 
of a Schmidt Telescope assembly.  The corrector plate is 10-inches in diameter, 0.75-inches thick, and 
mounted within an aluminum ring frame with six titanium tangential flexures bonded to the edge of the optic.  

detrimental / negative fatigue effect



A Weibull characteristic strength of the corrector plate was computed by scaling the test specimen data 
(characteristic strength of 10.2 ksi, Weibull modulus of 30.4) using an effective surface area based on the 
surface tensile stress distribution.  This yielded a characteristic strength of the corrector plate of 9.7 ksi.  Peak 
corrector plate stresses occur where the adhesive bond attaches the flexure to the corrector plate.  The 
component design strength coupled with the crack growth data, represented by a power function (A =  23.6; 
N = 128), yielded the design curves in Figure 6.1.  A design strength was then selected of 1.7 ksi based on a 
probability of failure of 10-5 and a desired survival time of 10-years.  This analysis made the assumption that 
the moisture present during the collection of the crack growth data is the same as that during operation in 
orbit, which is a conservative assumption.  Thus the actual time-to-failure may be greater.  

 
 

                Figure 6.1 Corrector Design Strength Curves 
 

SUMMARY 
 

Determining a design strength for glass optical elements is critical when stress levels are expected to exceed 
1000 psi in common optical glasses or when comparatively brittle glass materials are employed.  In addition, 
a design strength enables optical mounting methods to be selected that are consistent with the required 
factors of safety.  The strength of optical glass is governed by the surface finish, surface area under tensile 
stress, glass composition, and the type of loading.  Knowing the fracture toughness of the material allows a 
design strength to be based upon an estimated flaw size.  The flaw size may be estimated based upon the size 
of the grinding particles.  The design strength of a material may also be based upon probabilistic methods 
using a Weibull statistical distribution.  Both the above methods assume no crack growth occurs during the 
lifetime of the part.  For glass materials exposed to stress levels over a significant time, subcritical crack 
growth occurs that decreases the strength of the glass.  Crack growth data may be determined for a given 
material using material test methods that allow the time-to-failure to be predicted.  Coupling this with 
statistical data on the inert strength of the material enable a family of design curves to be developed.  For 
glass elements subject to dynamic or cyclic stress levels, predicting the strength of the glass is more 
complicated.  Fatigue effects have been identified in brittle solids that may increase or decrease crack growth 
as compared to a static load. In lieu of crack growth data during cyclic loading, conservative estimates of 
glass strength are recommended. 
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