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ABSTRACT

The finite element method is used to perform optimization of an actively controlled mirror’s structural design. The theory of
the method of modeling actuators is developed followed by execution of a test case demonstrating the effectiveness of this
method in improving the correctability of a lightweight mirror. Design variables include shape and sizing optimization of the
mirror’s structural design. The design objective is the root-mean-square optical surface error after best correction of a
wavefront with power aberration. Design constraints are applied to the mirror weight and the mounted natural frequency.
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1. INTRODUCTION

The current demand for active optics requires efficient methods by which efficient structural designs can be easily developed.
To be effective such methods are required to relate optical performance quantities to structural design variables. The use of
uncorrected optical performance quantities as responses in finite element optimization techniques has been developed in
previous work.1 Furthermore, post-processing methods are available for computing an actively controlled optic’s wavefront
correctability from finite element results of actuator influences. The method presented here, however, combines both of these
capabilities to include actively corrected optical performance quantities as responses in structural finite element design
optimization. By simultaneously including both actuator variables and structural design variables, an automated optimization
analysis can tune the structural design to the actuator layout and also meet any other given requirements.

The method presented is demonstrated using MSC/NASTRAN v.70.7 but may be utilized in any finite element tool with
similar design optimization capability.

2. THEORY OF METHOD

2.1. Optimization Problem Statement

The standard form of a design optimization problem is as follows:

MINIMIZE: F

DESIGN VARIABLES: XL ≤ Xi ≤ XU

SUBJECT TO: Gj = (Rj-RU)/RU ≤ 0
Gj = (RL-Rj)/RL ≤ 0

where F is the objective function, Xi is the ith design variable with lower and upper limits, XL and XU, respectively, and Gj is
the jth design constraint which is related to the jth response quantity, Rj, whose allowable lower and upper bounds are RL and
RU, respectively.

2.1.1. Design variables

Design variables are those quantities related to physical characteristics of the design problem that may vary within allowable
ranges during the optimization process. For example, in the lightweight mirror test case to be presented in Section 4 the
structural design variables include the faceplate thickness (Tp), core wall thickness (Tc), and various shape variables (Hk) for
designing the mirror core sculpted shape. The design variables also include quantities related to the behavior of each actuator
used in wavefront correction of the optic.
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2.1.2. Design responses

Primary design responses include any quantities computed by the finite element code without user definition. Such responses
include nodal displacements, weight (W), and first natural frequency (fn).

Synthetic design responses include any quantities computed via an equation involving primary design responses or other
synthetic design responses. The root-mean-square (RMS) of an optical surface deformation is a response quantity which
must be synthetically computed from nodal displacements via an equation. This quantity is treated as the objective function
to be minimized. Methods of calculating this quantity within a finite element optimization after removal of any Zernike
polynomial(s) is treated in Reference 1.

2.2. Method of Modeling Actuators

Modeling of actuators in a finite element model is shown schematically in Figure 1. Actuators are assumed to be stiff links
providing a variable enforced relative motion between the optic and its mounting structure. Each actuator model consists of
bar element pairs connected to the same two nodes to which a change in temperature is applied. As shown in Figure 1 the
bars in each pair are given coefficients of thermal expansion, α, which
are opposite in sign. The areas of each bar element pair, A1 and A2, are
driven opposite directions by a single design variable referred to as an
actuator control variable. Therefore, any change in the actuator
control variable will cause the bar element pair to grow or shrink as
the bar with increasing area dominates over its respective counterpart
whose area decreases. The sum of the areas is held at a relatively
large constant so that the sensitivity of the optical surface RMS
deformation with respect to the actuator control variable is significant
enough to yield a well posed optimization problem.

The relationship of the bar areas to the actuator control variable can
be developed by starting with the assumption that the bar pair is very
stiff compared to the rest of the system. Therefore, the only
significant stiffness between the upper and lower ends of the bar pair
is that of the two bar elements themselves. Therefore, we write the
force balance at the top of the bar pair as
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where A1 and A2 are the bar areas to be controlled by the actuator control variable, α is the coefficient of thermal expansion, L
is the length, ∆T is an enforced change in temperature, E is the Young’s modulus, and δ is the actuator displacement. Solving
for the actuator displacement gives
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Canceling terms and setting L and ∆T arbitrarily to unity gives
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We also require that the stiffness of the element pair remain constant as the areas are changed. Therefore,
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Figure 1: Schematic description of actuator model.



where AT is a constant total area to be represented by the bar pair. Solving for A2 in Equation (4) and substituting into
Equation (3) yields,
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which can be used to obtain an expression for A1 in terms of the actuator displacement. An expression for A2 can also be
found in a similar manner. The final expressions are then
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These relations prescribe that in order to increase δ, A1 must be increased by the same amount A2 is decreased. In order to
present the optimizer with a well behaved design variable, the transformation,
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is made from δ to the actuator control variable, xa, where b is an offset and C is a scaling factor. This transformation allows
the actuator control variable, xa, to range above and below a value b rather than zero thus avoiding numerical difficulties most
optimizers have with zero valued design variables. It also allows control of the magnitude of the gradients of the objective
function with respect to the actuator control variable through the scaling constant C.

Treatment of force actuators and displacement actuators is identical during any load case which computes the corrected
surface as a design response. In other load cases or natural frequency computations in which it is desired that the force
actuators be removed from the load path, a multi-point constraint, which is used to connect the force actuator bar pairs to the
optic in the correctability load cases, can be turned off.

3. SPECIFIC GUIDELINES

Although very powerful tools in engineering and other disciplines, numerical optimizers are unfortunately not entirely robust.
The usefulness of the final results are often highly dependent on the initial formulation of the design problem. These
guidelines are listed as general recommendations specific to optimization of active optics in order to help the reader present
the optimizer with a well posed design problem capable of returning useful results. However, these observations are not
complete in advising the reader on the avoidance of ill-posed formulations. Further reading in optimization techniques may
provide additional insight in coaxing more complicated design problems to useful solutions. 2,3

3.1. Initial Actuator Inputs

The combined optimization process involving both actuator control variables and structural design variables proceeds more
efficiently if the initial values of the actuator control variables are set to give the best corrected optical surface for the initial
structural design. When these initial actuator inputs are present, the optimizer can more easily assess how to improve the
corrected surface by adjustment of the structural design variables. The actuator control variables then only need to be given
minor adjustments as the structural design variables evolve. The initial values for the actuator control variables can be found
by performing an optimization on the initial structural design including only the actuator control variables.

3.2. Relative Scaling of Actuator and Structural Design Variable Sensitivities

When the optimizer is presented with initial actuator inputs as discussed in Section 3.1 it is very important that the first
search direction have significant components in the structural design variables since consideration of only the actuator control
variables represents an optimally corrected surface. Therefore, it is important that the structural design variable to property
relations and the shape basis vectors be scaled such that the objective sensitivities with respect to the structural design
variables are one or two orders of magnitude greater than the objective sensitivities with respect to the actuator control
variables. Indication of failure to do this is evidenced by an optimization run that returns the initial structural design variable



values after one design iteration. Examination of the objective gradient components will indicate by how much the structural
design variable to property relations must be scaled in order to generate a well posed problem.

4. EXAMPLE PROBLEM

4.1. Design Optimization of an Actively Controlled Lightweight Mirror

Figure 2 shows the initial design of a 48 inch diameter actively controlled lightweight mirror fabricated of ULE which is to
correct a wavefront with 4 He-Ne waves peak to valley of power error as defined by the 2ρ2-1 Zernike polynomial term. This
amount of power corresponds to an optical surface error of 0.5793 He-Ne waves RMS. The mirror is to be controlled by 37
actuators whose locations are illustrated in Figure 3.

The structural design variables are taken to be the faceplate thickness (Tp), core wall thickness (Tc), and five shape variables
(Hk) for designing the mirror core sculpted shape. Each of the five shape basis vectors represents a different radially
dependent core sculpting shape as illustrated in Figure 4.

The encircled triangular cell size is held constant at 2.0 inches in diameter. It is required that the mirror weigh less than 70 lbs
and that the first natural frequency on its three displacement actuators be greater than 150 Hz. The design optimization
problem is written, therefore, as follows:

MINIMIZE: Corrected Surface RMS

DESIGN VARIABLES: 0.1 inch ≤ Tp ≤ 0.5 inch
0.04 inch ≤ Tc ≤ 0.25 inch
-1.0 ≤ Hk ≤ 1.0 for k=1,2,3,4,5

SUBJECT TO: W ≤ 70.0 lbs→ (W-70.0)/70.0 ≤ 0.0
fn ≥ 150.0 Hz → (150.0-fn)/150.0 ≤ 0.0

Figure 2: Finite element model plot of initial
active mirror design. Top facesheet is partialy
removed to show triangular core pattern.

Figure 3: Locations of 37 actuators plotted on
core layout.
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.
Figure 4: Plots of five shape variables. Solid lines show initial
mirror profile while dashed lines show shape variation.



An optimization with only the actuator control variables was performed initially to find the actuator inputs for the optimally
corrected surface corresponding to the initial design. The resulting inputs were then used in a second optimization analysis
which included both actuator control variables and structural design variables. The coefficient of thermal expansion for the
actuator bar pairs was taken to be 0.01 °F-1 while the Young’s modulus and total pair area were set to 107 psi and 10.0 in2,
respectively. The actuator control variable transformation constants C and b were taken to be 104 and 1.0, respectively. Five
finite element analyses were required to obtain a converged optimum. The performance results of the initial and optimized
design are compared in Table 1.

Table 1
Performance Results of Active Mirror Optimization

Design
Response

Initial
Design

Optimized
Design

Weight 93 lbs 70 lbs

Natural
Frequency

188 Hz 150 Hz

Corrected Surface
(0.5793 λHe-Ne RMS Input)

0.0152 λHe-Ne RMS 0.0089 λHe-Ne RMS

Even though the initial design violates the weight constraint, the resulting optimum design meets both the natural frequency
and weight requirements with significant improvement in the corrected surface.

The optical faceplate thickness of the optimized design is 0.241 inch while the core wall thickness is 0.113 inch. Figure 5
shows the sculpted core profile of the optimum design.

5. CONCLUSIONS

A method for including the calculation of corrected surface of an actively controlled optic in structural design optimization is
developed. Guidelines specific to this problem are offered to maximize the success of achieving useful optimization results.
This method is also demonstrated by design optimization of an actively controlled lightweight mirror. The optimization of
this example design results in a significant improvement in the corrected figure of the optical surface over the initial design.
This improved correctability results from presenting the optimizer with the both structural design variables and actuator
control variables in a single optimization analysis. With all of these variables the optimizer is able to tune the structural
design variables to find an optimally correctable structure.
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Figure 5: Plot of optimized mirror core shape.


