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By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful 
predictions of a product’s performance. By coupling mechanical and optical predictive techniques mechanical design can be 
performed to optimize optical performance. This paper demonstrates how the DRESP3 feature in MD Nastran’s SOL 200 can 
be used to perform mechanical design optimization on a high precision adaptive optical imaging system. While mechanical 
design parameters are treated as the design variables, the weight of the primary mirror is minimized while the adaptively 
corrected optical imaging performance is constrained to a requirement. 
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1 INTRODUCTION 
 
Multidisciplinary optimization has been the focus of much recent work.1-20 By linking predictive methods from multiple 
engineering disciplines, engineers are able to compute more meaningful predictions of a product’s performance and improve 
the efficiency of the design process. In the design of precision optical systems, such as those used for imaging and 
communication, the optical performance is directly affected by the mechanical behavior of the system. Dynamic 
disturbances, thermoelastic deformation, and other operational loads cause the precisely formed optical surfaces of an optical 
system to move and deform. Even deformations on the nanometer level can have a profound impact on how well some 
optical systems perform. By coupling mechanical and optical predictive techniques mechanical design can be performed to 
optimize optical performance. 
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Figure 1: Example wavefront requirement budget for an optical system. 
 
A common technique in the development of an optical system is to develop the mechanical design of individual subsystems 
by independent parallel processes. These designs are developed to requirements which have been flowed down from a top 
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level system requirement as shown in Figure 1. This flow down of requirements to the various subsystems is done by 
experience and with much iteration as design teams negotiate for rebalancing of the allocations. This is done because 
prediction of an optical system’s performance requires the use of optical design software with imported mechanical analysis 
results. Since such optical design tools are not integrated within any finite element tools in a widely available fashion for use 
in automatic design optimization, performing design trades on system level performance is cumbersome. While attempts 
have been made to integrate optical design software with mechanical finite element tools, there has been no widely available 
tool with which mechanical engineers can compute system level optical performance metrics within mechanical analysis 
software for a wide array of problems. 11,16,18 
 
This paper demonstrates how the DRESP3 feature can be used to predict the system wavefront error of a high precision 
adaptive optical imaging system to support design optimization in MD Nastran’s SOL 200. While the weight of the primary 
mirror is minimized and mechanical design parameters are treated as the design variables, the adaptively corrected optical 
imaging performance of an orbiting telescope is held to a requirement. 
 

2 ADAPTIVE OPTICS SIMULATION 
 
It is of particular interest to be able to compute the corrected performance of an adaptive optical system. Since the ability of 
adaptive optical surfaces to deform into any desired shape is limited by their mechanical characteristics (e.g., stiffness and 
actuator layout), such predictive capability is required in designing the optical system to maximize the system’s corrected 
performance. We introduce the methods of adaptive optics simulation in the following two subsections. The first deals with 
adaptive control of a single surface while the second deals with adaptive control of an entire optical system of multiple 
surfaces. 
 
2.1 Single Surface Performance 
 
Adaptive simulation of a single surface can be represented by the pictorial equation in .Figure 2 14 The first term on the left-
hand side represents an input disturbance to the optical system which may be an aberrated incident wavefront or a 
deformation of the adaptive surface due to environmental loading. The other terms on the left hand side are called actuator 
influence functions and each represent the shape of the optical surface due to an arbitrary input of a single actuator. The term 
on the right hand side is the resulting surface due to the effect of the initial disturbance plus the effect of the actuators. The 
goal of adaptive simulation is to find the actuator control inputs x1, x2,…,xn which minimizes the surface deformation on the 
right hand side.  

 

x1 x2 xn

Input Disturbance Actuator 1 Actuator nActuator 2 Surface Error  
Figure 2: Pictorial equation of single surface adaptive simulation.

Mathematically, adaptive simulation of a single surface is achieved by minimizing the mean square surface error of the 
corrected optical surface.  The corrected displacement of the ith node, dsi

Corr, is the sum of the uncorrected displacement of 
the ith node, dsi, and the displacements induced by each actuator,  
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where xj is the variable actuator input for the jth actuator, and dxji is the displacement of the ith node for the jth actuator’s 
influence function. The mean square residual error, E, of the corrected optical surface is represented by, 
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where wi is the area weighting of the ith node.  

he actuator inputs that minimize the mean square error, E, are found by taking derivatives of Eqn. (2.2) with respect to each 
 
T
actuator input, xj, and setting each resulting equation equal to zero. This results in the following linear system represented by 
Eqn. (2.3): 
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he adaptive mirror’s residual RMS surface error, 
 

ET , may be computed with the use of Eqn. (2.2) once the actuator inputs 

.2 System Level Performance 

hile it may be useful in some applications to predict the adaptive control performance of a single optical surface, a much 

he mathematical description for performing integrated adaptive analysis using Zernike decomposition techniques is 

nce the optical sensitivity matrix has been generated, each actuator influence function, Φm, where m is the actuator, is 

have been found from Eqn. (2.3), (2.4), and (2.5). 
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W
more powerful tool is to be able to predict the adaptive performance of an entire optical system as discussed in Section 1. 
This approach is based upon the method of superposition and the linearity of Zernike polynomials in the wavefront with 
Zernike polynomials and rigid body motions describing the deformations and motions of optical surfaces.8  For the small 
surface perturbations typical of adaptive optical systems, this approximation is generally valid.  This computation is 
performed by importing the changes in the wavefront error of each Zernike polynomial at a location of optical performance 
measurement (e.g., the focal plane) with respect to changes in the rigid body motion and Zernike polynomials of surface 
deformation of each optical surface in the system. These sensitivities can be computed in an automated fashion by optical 
design software. With this matrix of information we are able to compute the performance of the optical system due to any 
deformations and motions of the optical surfaces as long as they can be described by the rigid body motions and Zernike 
polynomials used in the development of the optical sensitivity matrix. Notice that the optical sensitivity matrix needs only to 
be generated once before any mechanical analysis as long as the optical prescription (shape and location of the optical 
surfaces) does not change. This method of system level optical performance prediction can be extended to adaptive control 
prediction in a similar method as was used in Section 2.2. 
 
T
provided below. An optical sensitivity matrix, Skj

n, represented by a set of Zernike terms, k, at the location of optical 
performance measurement, is computed from the optical system analysis model by perturbing each optical surface, n, by a 
unit surface perturbation, j.  Each of the unit surface perturbations is either a rigid body motion or a Zernike polynomial. 
Enough of these perturbations are chosen to adequately describe the expected deformations of the optical surfaces. 
 
O
decomposed into rigid body motions and Zernike polynomials, Bjm, by simple polynomial fitting, where, j is the rigid body 
motion or Zernike polynomial term fit to the influence function. Notice that both Φm and Bjm may contain the influence 
functions from multiple optical surfaces if there is more than one adaptive surface in the system. This polynomial fit is then 
converted to actuator influence functions of optical performance by, 
 

jmkjkm BSU = . (2.6) 

or a given perturbed state of the optical system due to an environmental load, each deformed surface is similarly 
 
F
decomposed into Zernike coefficients, Cji

n, where, j, is the vector of Zernike coefficients for load case, i, of each optical 



surface, n.  The wavefront error of the optical system is computed by multiplying the optical sensitivities by the Zernike 
terms of the deformed surface 
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where Zki is vector of Zernike polynomials, k, for each load case, i. 
 
Similar to Eqn. (2.2) fitting the actuators to minimize the optical system wavefront error is performed using a least-squares 
fit.  A system error, E, is defined as 
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where Am is the contribution coefficients of each actuator and wk, is the wavefront RMS error of each polynomial term, k, at 
the optical performance measurement location.  
 
To compute the best-fit actuator coefficients, the error function is minimized with respect to the actuator contribution 
coefficients. This is performed by taking the derivative of the error function with respect to these coefficients and setting it 
equal to zero as follows: 
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Rearranging terms yields the following expression: 
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The actuator coefficients may be solved via the following matrix equation: 
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The adaptive mirror’s residual RMS surface error, E , may be computed with the use of Eqn. (2.8) once the actuator inputs 
have been found from Eqn. (2.11), (2.12), and (2.13). 
 



3 IMPLEMENTATION 
 
A DRESP3 subroutine implementing the methods in Section 2 was 
used to return the corrected surface RMS error, E , within the 
design optimization feature of MD Nastran. The subroutine is a 
modified form of Sigmadyne’s commercially available software, 
SigFit. An additional utility was written to write the DRESP3 and 
other required bulk data. The function of the DRESP3 feature is 
illustrated in . Within the design optimization loop of MD 
Nastran SOL 200 the Sigmadyne SigFit DRESP3 server is available 
to provide the optimizer with the adaptively corrected performance of 
the optical system’s current design and local finite difference results 
used for sensitivity calculations. 

Figure 3

 
3.1 Bulk Data Format 
 
A combination of a DTABLE card and DRESP1 cards were used with 
the DRESP3 feature.21 The DTABLE card is used to store the various 
user selectable option values, prescription data associated with each optical surface, optical surface node locations, and 
optical surface node area weighting. If the user chooses to perform system level analysis instead of single surface analysis, 
then the optical surface sensitivity matrix, S, is stored on the DTABLE as well. An example DTABLE card is shown in 
Figure 4. 
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Figure 3: Flowchart of design optimization with 
system level optical performance evaluation. 

 
DTABLE   ina         1.0 nsym        0.0 nsbc        0.0 ns          3.0 
         ngs01     204.0 roc01  -1.015+2 ckk01  -1.00230 ssc01       1.0 
         ngs02     145.0 roc02  -1.249+1 ckk02  -1.49690 ssc02       1.0 
         ngs03       1.0 roc03       0.0 ckk03       0.0 ssc03       1.0 
         irb         0.0 izd         0.0 wvl    3.9370-8 izk         5.0 
         nat         9.0 iaa         0.0 ndt         1.0 isys        1.0 
         x00001  2.62500 y00001 -1.51554 z00001 -4.520-2 w00001 4.9020-3 
         x00002  1.50000 y00002      0.0 z00002 -1.110-2 w00002 4.9020-3 
         x00003  2.50000 y00003      0.0 z00003 -3.080-2 w00003 4.9020-3 
         . 
         . 
         . 
         x00348  1.20761 y00348 -0.32358 z00348 -6.277-2 w00348 6.8966-3 
         x00349  1.44938 y00349 -0.38836 z00349 -9.046-2 w00349 6.8966-3 
         x00350      0.0 y00350      0.0 z00350      0.0 w00350  1.00000 
         ism01       3.0 nzp01      37.0 
         a00001      0.0 a00002      0.0 a00003      0.0 a00004      0.0 
         a00005      0.0 a00006      0.0 a00007 -1.135+4 a00008 -1.84-13 
         a00009 -5.26-14 a00010 7.079-12 a00011 1.1596+6 a00012      0.0 
         a00013 3.715-10 a00014 -1.135+4 a00015 5.8002-7 a00016 -1.160+6 
         . 
         . 
         . 
         a00213 -1.389-6 a00214 1.3149-3 a00215 1.3136-3 a00216      0.0 
         a00217 3.3925-6 a00218 2.4075-6 a00219 -5.857-6 a00220 -2.017-3 
         a00221 -2.016-3 a00222      0.0 
         b00001      0.0 b00002      0.0 b00003      0.0 b00004      0.0 
         b00005      0.0 b00006      0.0 b00007      0.0 b00008      0.0 
         b00009      0.0 b00010      0.0 b00011      0.0 b00012      0.0 
         . 
         . 
         . 
         b01361 1.3808-5 b01362 5.8228-5 b01363 5.8227-5 b01364 1.5570-4 
         b01365 2.1019-4 b01366 1.1025-3 b01367 1.1025-3 b01368 -5.224-3 
         b01369  1.98370 
         ism02       3.0 nzp02      37.0 
         c00001      0.0 c00002      0.0 c00003      0.0 c00004      0.0 
         c00005      0.0 c00006      0.0 c00007 1.0250+4 c00008 -3.58-14 
         c00009 -1.17-13 c00010 -2.55-12 c00011 -1.290+5 c00012      0.0 
         . 
         . 
         . 

Figure 4: Example DTABLE card for system level adaptive control analysis. 
 



DRESP1 cards are used to compute the optical surface nodal translations. Nodal rotations are not required. A set of DRESP1 
cards covering all optical surface nodes are written for each actuator influence function subcase and disturbance subcase. 
Example DRESP1 cards are shown in Figure 5.  
 
DRESP1    100001D0100001 DISP                          1           10001 
DRESP1    100002D0100002 DISP                          2           10001 
DRESP1    100003D0100003 DISP                          3           10001 
DRESP1    100004D0100004 DISP                          1           10003 
DRESP1    100005D0100005 DISP                          2           10003 
DRESP1    100006D0100006 DISP                          3           10003 
DRESP1    100007D0100007 DISP                          1           10006 
DRESP1    100008D0100008 DISP                          2           10006 
DRESP1    100009D0100009 DISP                          3           10006 
. 
. 
. 

Figure 5: Example DRESP1 cards for request of translational displacements of optical surface nodes. 
 
The DRESP3 card is simply written to reference the DTABLE and DRESP1 entries so that they may be exported to the 
DRESP3 server routine. All of these cards are written by the utility program mentioned above with input from the user. 
 
The DRSPAN card must then be used in case control to assign the sets of DRESP1 cards to their respective subcases as 
shown in Figure 6. 
 
SUBCASE 11 
  LABEL=DISPLACEMENT ACTUATOR #1 
  LOAD=24101 
  SET 11 = 100001 THRU 101050 
  DRSPAN=11 
SUBCASE 12 
  LABEL=DISPLACEMENT ACTUATOR #2 
  LOAD=24201 
  SET 12 = 200001 THRU 201050 
  DRSPAN=12 
SUBCASE 13 
  LABEL=DISPLACEMENT ACTUATOR #3 
  LOAD=24301 
  SET 13 = 300001 THRU 301050 
  DRSPAN=13 
. 
. 
. 

Figure 6: Example subcases showing the use of the DRSPAN card. 
 

 
 
Figure 7: Finite element model of orbiting telescope. 

3.2 Example 
 
An example telescope model is used to demonstrate the 
optimization of an orbiting telescope’s adaptive primary mirror. 
A plot of the telescope model is shown in . The primary 
mirror is of lightweighted construction composed of a 
lightweighted triangular cell core with front and back faceplates. 
A primary mirror reaction structure provides mounting locations 
for three displacement actuators and six force actuators. This 
reaction structure also supports the focal plane unit behind the 
primary mirror. An Invar shell is used to meter a secondary 
mirror assembly comprised of the secondary mirror and spider 
structure. Six main struts are used to mount the telescope to the 
spacecraft bus. 

Figure 7

 
The goal of the optimization is to minimize the weight of the 
adaptively controlled primary mirror while constraining the optical performance of the telescope as shown in Figure 1. The 
optical performance is measured by the wavefront error at the exit pupil of the telescope system. Several design variables 



relating to the design of the primary mirror are defined. These variables include the depth of the mirror core, the thicknesses 
of the facesheets, and the wall thicknesses of various regions of the mirror core as shown by the shading in Figure 9. The 
thickness variables were defined such that thicknesses could be designed near each of the mounts and actuators. Additional 
requirements were imposed consisting of a minimum natural frequency and a launch stress allowable. The optimization 
problem is formally defined as follows: 
 
MINIMIZE:  
 Weight of primary mirror 

 
Figure 8: Core thickness variables shown 
by shading. 

DESIGN VARIABLES: 
 Optical facesheet thickness: 0.18 inch < tf < 0.25 inch 
 Back facesheet thickness: 0.10 inch < tb < 0.25 inch 
 Interior core wall thicknesses: 0.04 inch < tc < 0.25 inch 
 Inner and outer core wall thicknesses: 0.08 inch < tc < 0.25 inch 
 Core depth: 0.25 inch < tc < 5.0 inch 

SUBJECT TO: 
 Thermally induced system wavefront error < 20 nm RMS 
 Gravity release induced system wavefront error < 60 nm RMS 
 Peak launch induced stress in PM < 1000 psi 
 First mounted PM natural frequency > 200 Hz  
 
The analysis results for the initial design and the optimized design are shown in Table 1 alongside the requirements. Notice 
that the optimizer reduces the weight of the primary mirror by over 50% while the constraints on system wavefront error, 
launch stresses, and natural frequency are obeyed. It is important to notice that the stress constraint is already active in the 
initial design while the gravity induced wavefront error constraint is nearly active. 
 
Table 1: Results of Design Optimization 
Response Initial Design Optimized Design Requirement
Thermally Induced Wavefront Error 9 nm 20 nm 20 nm
Gravity Release Induced Wavefront Error 54 nm 60 nm 60 nm
Peak Launch Stresses 1000 psi 1000 psi 1000 psi
First Natural Frequency 231 Hz 221 Hz 200 Hz
Weight 20.8 kg 9.9 kg Minimum
Areal Density 53.0 kg/m2 25.2 kg/m2 Minimum  
 
Notice that the use of the system level optical performance as a response allows the design of the primary mirror to develop 
into a design which best corrects the system wavefront error rather than only the wavefront error of the primary mirror 
assembly. The optimum primary mirror design, therefore, includes the best mix of design characteristics for correcting the 
errors from the secondary mirror assembly, the errors from the metering structure, as well as the errors from the primary 
mirror assembly. This approach gives the optimizer more freedom in finding an optimum design compared to the method of 
Figure 1 which optimizes each subsystem independently to separately allotted requirements. 
 

4 IMPROVEMENTS 
 
4.1 DRESP3 Gradient Calculation 
 
The method used to compute design sensitivities of DRESP3 responses with respect to the design variables prior to V2008R1 
was not as efficient as it could be for responses with many DRESP1 arguments. On page 56 of the MSC.Nastran 2004 Design 
Sensitivity and Optimization User’s Guide the equation for an example sensitivity of a DRESP2 or DRESP3 with respect to a 
design variable is written in Eqn. 2-38. A more general form based on this equation is, 
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where, r is the DRESP2 or DRESP3 synthetic response, Na is the number of arguments sent to the DRESP2 or DRESP3, aj is 
the jth such argument of the vector of design variable dependent arguments a(X0), Xi is the ith design variable value of the 
vector of current design variable values, X0, Δaj is the finite difference step of the jth argument, and ΔXi is a finite difference 
step of the ith design variable. Eqn. 4.1b is required for use with any argument aj for which a finite difference calculation 
must be used to compute the gradient with respect to the design variable Xi. This equation has the disadvantage that two 
evaluations of the synthetic response are required for each argument which has a nonzero sensitivity with respect to a design 
variable. For the purposes of optical surface evaluation in which there are many nodal displacements involved, this can be 
very computationally expensive. 
 
A more efficient form for sensitivity computation for response, r, would be, 
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where, Xi is the ith design variable value of the vector of current design variable values, X0, a(X0) is the argument list of the 
DRESP2 or DRESP3 evaluated at the current design variable values, and ΔXi is a finite difference step of the ith design 
variable. This method was implemented in V2008R1 when the argument list is comprised of only DTABLE and DRESP1 
quantities and when the number of DRESP1 arguments exceeds the number of design variables.22 This improvement has 
resulted in the ability to use the DRESP3 for system level adaptive control simulation whereas the prior algorithm rendered 
the feature unusable. 
 

5 CONCLUSIONS 
 
A method for incorporating multidisciplinary optimization in the design process of optical systems was presented. The 
process is highlighted by being able to predict the system level optical performance during automated optimization of the 
mechanical design. The use of this system level performance in design optimization allows the optimizer to find designs 
which might be unrealizable by independent subsystem optimization. This process would be most effective early in the 
design process when various system concepts are being compared. This method allows engineer’s to quickly obtain a rough 
estimate of the optimum design for the system. Once this has been done for each concept being considered a final selection of 
the best concept can be made. The resulting subsystem designs and error allocations found by the optimizer can then be given 
to separate design teams for more detailed design work to be performed in parallel. 
 
The addition of the DRESP3 to MSC.Nastran SOL 200 is a powerful improvement to the design optimization features. The 
DRESP3 allows the user dramatically more capability than available before. Such capability allows engineers to make 
engineering predictions which were never before possible within the bounds of a finite element code.  
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