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Abstract: Computational analysis is commonly accepted in both optical and mechanical design.
Integrating the two diverse fields to predict optical performance under mechanical environments presents
several challenges which will be addressed in this paper.

Introduction:

When mechanical engineers undertake their first analysis of an optical structure, they must be aware of
the differences from traditional mechanical structures. Most traditional structures are made of ductile
materials such as steel or aluminum. The analysis is based on comparing Von Mises stress to material
yield. Lenses and mirrors are often composed brittle glass or ceramics, in which the failure is fracture
based on maximum principal stress. If ductile materials are used in an optical system, failure may be
based on the precision elastic limit (micro-yield) rather than the common 0.2% offset yield.

Another difference is that optical structures are designed to be stiffness limited, rather than stress limited
as in conventional design. If an optical structure deflects too much, it will fail to produce acceptable
performance. In operation, an optical system with satisfactory performance is usually under low stress.

Size matters. In traditional structures, deflections and tolerances are measured in millimeters. In optical
structures, deflections and tolerances are measured in microns or nanometers.

Thus, the mechanical engineer must adjust to the differences required for optomechanical analysis. The
engineer faces two other obstacles, optical terminology and optical software. This paper will address the
issues and challenges with integrated optomechanical analysis.

The authors have extensive experience in this topic! as part of the development of the commercial code
SigFit>. Examples from SigFit will be used throughout this paper.

Challenge: getting displacements from FE codes:

A finite element (FE) analysis will include displacements of every node in the model, including the
metering structure, bonds, and other support structures. The optical analysis only requires displacements
of the optical surface, which must be processed before passing to optical codes. The effort required to
obtain the FE model and displacements vary significantly for FE software. For example. Nastran provides
model and results in readily available ASCII format®. Other programs require special code using their API
interface®.

To understand and process the FE results, the user must specify which nodes belong to which surface. In
SigFit, the user specifies a named entity or numbered property in the FE model for each optical surface.
The procedure varies from FE code to FE code. The user must also specify which load cases should be sent
to the optics code. Again, this is easier in some FE codes than others.



Once the proper FE data has been collected, it must be processed. Displacements must be converted to
local coordinate system of each surface aligned with the optical model. At this point, radial correction
must be applied to account for the impact of radial growth on the sag displacement®. In the Figure 1
below, an optical surface has growth due to isothermal temperature change. It can be seen that the sag
displacement is NOT the same as Z displacement in the presence of radial growth. In the figure, the Z
displacement is positive, but the sag of the surface is negative.
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Figure 1: Isothermal growth of an optical surface

Challenge: passing displacements into Optics codes:

Optics codes are not written to accept FE results. To get the environmental effects into the optical
analysis, the data must be processed and converted to a form allowed by each optics code.

When passing results to an optics code, the data must agree with the optics model for

1) Model units

2) Surface numbering and type
3) Coordinate system orientation
4) Data formats

To facilitate the coordination, the user may view the optics model in SigFit and select the desired surface
data directly. This reduces the chance for transcription errors.

Optics codes treat rigid-body motion more accurately and efficiently than polynomial data. In a ray trace,
the intersection with the rigid-body motion is a closed form calculation, rather than the iterative
technique required with polynomial input. Confusing issues with rigid-body motion include:

1) Rotation signs: CodeV use left-handed Rx and Ry, but right handed Rz
2) Units: CodeV and Zemax use degrees for rotations, not radians.
3) Zemax has no Z rigid-body, it is treated with a THICK command.

Elastic distortions of a surface may be represented as best-fit polynomials or as grid array data which will
be addressed in the next sections.

Challenge: representing surface displacements as polynomials:



A subject as simple as Zernike polynomials can be very confusing to the novice because of the following:

1)
2)
3)
4)
5)
6)

Combining distortion polynomials with prescription polynomials
Amplitude normalization

Radial normalization

Numbering/order

Missing terms

Sag vs normal displacement

Each topic is discussed below.

1)

2)

3)

4)

If a surface is defined as a conic in the nominal prescription, the distortion best-fit polynomials
must be added to the prescription, changing the surface type to Zernike for instance. If the
prescription is asphere, then the aspheric and Zernike terms must be combined and redefined as
a Zernike surface. When combining polynomials, care must be given to use a consistent radial
normalization.
Born and Wolf define Zernike polynomials as having unit amplitude at the normalizing radius. Noll
defines Zernike polynomials so that they have unit RMS over the normalizing circle (Table 1)

a. CodeV uses unit amplitude normalization for standard and Fringe Zernikes

b. Zemax uses unit RMS normalization for standard Zernikes

c. Zemax uses unit amplitude normalization for Fringe Zernikes.

Normalization
Zernike Term Unit Amplitude Unit RMS
Focus (n=2) 2r* -1 \/5(2}*2 —1)

Spherical(n=4) 67" —6r* +1 \@(6?"4 — 67 +1)

Table 1: Zernike polynomial normalization

Radial normalization is the radius value at which the Born and Wolf Zernikes have a unit
amplitude, or Noll polynomials have unit RMS. Polynomials must be converted to a common
radial normalization before combination.

The numbering (ordering) of Zernike polynomials vary from code to code. For example, consider
the astigmatism terms in table 2. More extensive tables of numbering are given in Ref 1.

Zernike Standard Zernike Order Fringe Zernike_
Term CodeV__Zemax Order
r* cos(26) 204 706 205

r* sin(26) 206 205 206




Table 2: Zernike polynomial ordering

5) Some optics code polynomial representations (asphere for example) do not include a constant
term which is required for proper best-fit polynomial fitting. The constant term must be added
to the rigid-body Z displacement (or thickness term).

6) InZemax, polynomials must be fit to the sag displacement. In CodeV, the polynomials may be fit
to the sag or the normal displacement. If fit to sag, displacement, SigFit uses the polynomials to
redefine the surface as in item 1 above. If fit to normal displacement, SigFit will write the
polynomials to CodeV as an interferogram file, which was originally created to represent test data.

Challenge: representing surface displacements as grid array:

There are times when the chosen polynomials do not provide a good fit to the distortions. The user may
select may select different polynomial types, but the choice in optics codes is limited to aspheres, Zernikes
and XY polynomials. The user may request higher order terms, but each optic code has a limit on the
number of terms. For the example of quilting in a lightweight mirror (Figure 2), higher order terms do not
represent the deformation. An interpolated array can represent quilting accurately.
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Figure 2: Interpolation on a light weight mirror with quilting

In SigFit, interpolation is based on the FE element shape functions with an option to use closest node
technique. The element shape functions use a consistent theory with the FE model and are more accurate
than closest node methods. If the FE model has valid slope data (i.e. shell elements), then SigFit will use
the shell bending equations for interpolation for even higher accuracy as shown in Figure 3.
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Figure 3: Comparison of interpolation techniques

If only sag displacements are interpolated, Zemax will use multiple points to fit bi-cubic polynomials to
the data. If slope data is interpolated, Zemax can be more accurate locally with their bi-cubic polynomials.

Reading and writing CodeV grid interferogram files is a challenge for the uninitiated. The real data must

be converted to integer data by a scaling value. Grid points outside of the optic are represented by a no-
data value of 32767. See Figure 4 for an example.



! Sigmadyne, Inc. SigFit Version=v2007-rl.1 08-APR-07 11:00:50
b e e e o o o o o o o o o o o o o o o o o o o o o o o o
! SOLID MIRROR FUSED SILICA ’_'CCﬂnrneﬂtl-ne N
! DIAM=1M, ROC=3M : . Label line,
' 1G -Z ON 3 POINTS Sigﬁt passes
! Loadcase= 1 FEA Case ID= 1 Surface Sign= 1 array sizing
! Optic-Id= 1 OpticLabel =Surface
! X-start X-end Y-start Y-end Zoff Curv Conic
-5.00000E-01 5.00000E-01 5.00000E-01 -5.00000E-01 O.00000E+00 3.33333E-01 0.00000E+00
GRD 101 101 SUR WVL 1.00000E+00 SSZ 2.55164E+04 NDA 32767 X5C 1.00000E+00
32767 32767 32767 L 32767 4 32767 32767
32767 32767 32767 32767 32767 32767
32767 32767 32767 32767 32767 32767
32767 32767 32767 32767 32767 1585
1046 509 -26 -515 -1006 -1498
32767 32767 32767 32767 32767 32767
..truncatked
—1498
# points Wavelength No-data value YT -0.054
in x,y in microns (outside optic) ’
Surface data scale factor to convert Spacing ratio
not wavefront data to waves Ax/Ay

Figure 4: interferogram grid array file

Challenge: Calculating the effect of vibrations on optical performance

In transient response analysis, results at any time step can be treated the same as static analysis results.
The user only need to choose which snapshots in time to pass to the optics codes. To capture meaningful

results, a very large number of snapshots are required

In steady-state harmonic response analysis, damping causes the results to be complex numbers
representing magnitude and phase. Optics codes do not accept complex deformations. At any given
forcing frequency, the surfaces are oscillating sinusoidally. One option is to step though the complete
cycle from zero to 27w at any given forcing frequency, and output several deformed shapes for the optics
code. For multiple frequencies this can be a massive amount of data. See Figure 5 for a single forcing

frequency.
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Figure 5: Harmonic response with equal magnitudes but different phases

SigFit has a dynamic analysis capability to simplify harmonic analysis. Most FE harmonic response analyses
use modal analysis methods as does SigFit. The key to getting meaningful optical results is to decompose
mode shapes into rigid-body motion and elastic distortion before harmonic analysis. This allows the
results of the harmonic analysis to be accurately represented as rigid-body pointing error and residual
surface error.

In random response analysis, the input, and therefore the output, is represented statistically. Only
magnitude is output. All phasing of results is lost. Thus in Figure 6, the 3 nodes have the same magnitude,
but the phasing in (a) is all bias, whereas the phasing in (b) is all elastic distortion. These have widely
different impact on optical performance. SigFit addresses this issue by decomposing the mode shape data
before the random response analysis. SigFit will represent the response as rigid-body and residual surface
error. In addition, SigFit will list each modes contribution to each result which becomes a great design
diagnostic tool.

Figure 6: Random response with equal magnitude and different phase



Challenge: calculating Line-of-Sight:

Optics codes can create line-of-sight (LOS) coefficients. The challenge for the mechanical engineer is to
convert the optics output to fit a FE model. Conversion includes:

1)
2)
3)
4)
5)
6)

Convert left-hand rotations to right-hand

Convert degrees to radians

Convert units

Align coordinate systems

Using FE node numbers

Add interpolation element to calculate average surface motion

Without proper communication, there are several opportunities for error. SigFit has a ray trace capability
which allows it to automatically create LOS equations® for the FE model eliminating most sources of error
(Figure 7). If the dynamic analysis is conducted in SigFit, each modes contribution to LOS will be listed,
pointing to key modes to fix any problems. Another option is to output the effect on system MTF in

harmonic or random response®.
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Figure 7: Line-of-Sight calculation



Mode Freq LI-TX LI-TY LI-TV
4 70.1 0.0 0.0 0.0
5 73.8 9.9 49.1 16.8
6 73.8 11.3 49.1 18.0
7 79.3 0.0 0.9 0.2
8 79.3 44.0 0.9 36.4
9 82.1 0.0 0.0 0.0
10 82.9 0.0 0.0 0.0
11 85.3 0.0 0.0 0.0
12 85.3 0.0 0.0 0.0
13 90.3 0.0 0.0 0.0

Figure 8: Each modes % contribution to LOS

Challenge: calculating Thermo-Optic effects in diffractive optics

The index change due to temperature can be a very important effect in optical performance. Optics codes
can only represent radial gradients in polynomial form, not general FE thermal results. SigFit has two
approaches’ to this problem. The first approach is to integrate the index change due to temperature
through the lens® and represent that effect is an OPD map on the lens entrance surface as shown in Figure
9. If the integration paths do not match the ray paths, the lens can be automatically broken into several

layers for more accuracy.
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Figure 9: Thermo-optic analysis

Integrated OPD



The second approach is to use the CodeV gradient index lens capability. SigFit writes a database for the
temperature results which the CodeV calls at each ray path point. SigFit returns the current index at that
point. The higher accuracy comes at cost of slower analysis times.

Challenge: calculating Stress-Optic effects on optical performance

The effect of stress on index is usually less important than temperature. SigFit uses the same approach
for stress effects® as temperature effects. The index effect is integrated through the lens and represented
as an OPD map on the entrance surface. Figure 10 shows birefringence®® results for test data, closed form
analytical solution and a Nastran/SigFit analysis on a thin disk with three point radial load. In this simple
example, the state stress had a closed form solution. The FE approach is more general and could be used
on any geometry. The gradient index approach is not supported for stress, because the ray direction is
required in addition to the ray point location. CodeV does not provide ray direction in its gradient index
call.

SigFit will calculate stress birefringence effects and write BIRE and CAO files for CodeV. Zemax does not
have a similar birefringence input capability.
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Figure 10: Comparison of birefringence from test and analysis

Challenge: Using optical performance metrics in mechanical design



In an optical system, the optical performance is the key design criteria. The mechanical design should use
optical metrics in the design process. For example, when specifying interface tolerances on a mirror
mount, mirror surface error should be a driving criterion. In the model below (Figure 11), determining
mount flatness requirements was based on surface error.

Figure 11. Mount flatness and coplanarity

Three unit load cases were applied to each of the 3 mounts. SigFit then used Monte Carlo techniques'!
to perform 1000 simulations where variables were randomly selected within a specified tolerance on each
variable and the surface RMS error was calculated. The absolute maximum error, as well as the 90%
confidence level error, were reported (Ref xx). The design engineer could then change tolerance levels to
trade off resulting surface error verses the flatness requirement (and therefore cost) to reach a final
design specification.

In the telescope model shown in Figure 12, the adaptive primary mirror was structurally optimized to
satisfy system level wavefront error (WFE) under thermal and gravity loads!**3. The design variables were
core and face thickness of the mirror as shown in Figure 12. Design constraints were placed on mirror
stress, natural frequency, and system level WFE. The WFE was calculated from a linear optics model. The
optimization was conducted in MSC/Nastran’s solution 200 which called SigFit as a DRESP3 subroutine to
calculate the adaptive mirror correction and the system WFE. The resulting design met all performance
requirements while cutting the mirror weight in half (Figure 13).
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Figure 12: Telescope and optimized adaptive primary mirror



Response Initial Optimized Requirement
P Design Design q

Thermally Induced

Wavefront Error 9nm 20nm 20 nm

Gravity Release Induced 54 nm 60 nm 60 nm

Wavefront Error

Peak Launch Stresses 1000 psi 1000 psi 1000 psi

First Natural Frequency 231 Hz 221 Hz 200 Hz

Weight 20.8 kg 9.9 kg Minimum

Areal Density 53.0 kg/m? | 25.2 kg/m? Minimum

Figure 13: Optimization results
Challenge: Combine optical test results with FE analysis

Interferogram arrays from optical test include the effects gravity, temperature, and test fixture as well as
the residual polishing error. The interferogram array in Figure 14a represents raw test data interpolated
on to the FE mirror model in SigFit. The FE predicted gravity distortions were subtracted along with best-
fit plane and focus in Figure 14b. In Figure 14c, the actuators corrected the residual polishing error.
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Figure 14: Test interferogram on an adaptive mirror

Summary

Many challenges to integrated optomechanical analysis have been discussed. A major challenge is getting
the optical and mechanical analyses to talk to each other in a common language. This requires correlating
units, sign conventions, ordering of data, and formats. These challenges are not advanced technology,
but rather a bunch of very time consuming bookkeeping issues which are subject to error. An error in any
one issue can invalidate the whole analysis.

Other challenges involve incorporating optical performance metrics into the mechanical design and
analysis process. Optical surface error should be used in design optimization and tolerancing. Line-of-
sight equations are necessary to understand jitter effects in vibration analysis.

With the proper tools, these challenges can be overcome.
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