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ABSTRACT 
 
Mechanical tolerances within an optical system can consist of a wide array of variables including machining tolerances, 
variability in material properties, uncertainty in applied loads, and discrete resolution of actuation hardware. This paper 
discusses methods to use integrated modeling and Monte Carlo techniques to determine the effect of such tolerances on 
optical performance so that the allocation of such tolerances is based upon optical performance metrics. With many 
random variables involved, statistical approaches provide a useful means to study performance metrics. Examples 
include the effect of mount flatness on surface RMS and Zernike coefficients and the effect of actuator resolution on the 
performance of an adaptively corrected deformable mirror. Coefficient of thermal expansion and thermal control 
tolerances impacting both line-of-sight errors and surface RMS errors are also addressed. 
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1.0 PURPOSE 
 
This paper addresses the following issues in determining meaningful mechanical tolerances in optical systems. 

1) Use integrated optomechanical analysis to relate mechanical effects to optical performance metrics 
2) Use Monte Carlo techniques to determine the effect of many random variables on performance statistics 

The examples in this paper will use optical performance metrics of line-of-sight errors, surface RMS, and polynomial 
coefficients. 
 

2.0 ANALYSIS   
 
The analyses described in this section are embedded in the SigFit1 optomechanical analysis software.  A general 
discussion of SigFit is included in section 7.0 
 
2.1 Polynomial coefficients 
Polynomial coefficients are typically fit to displacement data in a post-processing step2. The method is a least squares fit 
to find the polynomial coefficients which minimize the error defined as, 
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where, 
 

N = the number of nodes, 
wi = weighting coefficient of node i, 
M = the number of polynomial terms, 
ds′i = surface deformation or optical path difference at node i, 
Cj = polynomial coefficient for polynomial term j, 
pji = value of normalized polynomial function for term j at node i. 
 



Taking partial derivatives of E with respect to each polynomial coefficient and setting each equal to zero leads to a linear 
system of M equations for M unknowns,  
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which allows for computation of the coefficients which minimize the error E.  This process can be inverted to write the 
coefficients as a function of the nodal displacements (U = ds’).   In SigFit the nodal displacements are modified to 
include radial correction. 
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This form is incorporated with the Monte Carlo analysis below.  Any of the polynomial types supported by SigFit 
(shown in section 6) may be used.  These polynomials, as well as the rigid-body terms, are all corrected for radial 
growth, so they can be used to accurately model thermoelastic effects. 
 
 
2.2 Line-of-sight errors 
Line-of-sight (LoS) errors are calculated in SigFit from a ray trace algorithm.  SigFit calculates the LoS coefficients and 
automatically performs a rigid-body error check to verify their accuracy.  LoS results are presented for both the image 
space and the object space.  Since the rigid-body motion includes radial correction in SigFit, the LoS capability may be 
used for thermoelastic load cases.  Note that an interpolation element like the RBE3 does not correctly account for radial 
growth of curved optical surfaces. 
 
 

 
 
 
2.3 Monte Carlo analysis 
 
The responses quantities (displacements, polynomial coefficients, surface RMS error, line-of-sight error, etc.), Uij, are 
determined by the following equations, 
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where, i is an index on the Monte Carlo analyses, k is an index on the variables, j is an index on the response quantities, 

kNomV  is the nominal or mean value for the kth variable, σk is the uncertainty of the kth variable, and γik is a random 
number with a mean of 0.0 and an uncertainty of 1.0 with distribution is specified as normal or as uniform for the ith 
Monte Carlo analysis and the kth variable, and 

jNomU is the nominal or mean value for the jth response quantity. The 

partial derivative of the jth response with respect to the kth variable is determined from the jth response of the state used to 
define the kth variable minus the jth response of the specified nominal state. That is, 
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where, Ujk is the jth response of the disturbance defining the kth variable, Vk is the variable value associated with Ujk. 
 
In SigFit, the response quantities subject to Monte Carlo analysis include: 

1) rigid-body motion (average surface motion) 
2) surface RMS error after rigid-body motion subtracted 
3) polynomial coefficients  (using section 2.1) 
4) line-of-sight errors (using section 2.2) 
5) adaptively corrected surfaces 

The individual variables are subcase response data.  Thus any quantity or combination of quantities represented in a 
finite element model that when varied cause a new response can be a Monte Carlo variable.  Any form of input data 
allowed by SigFit may represent a subcase variable, including regular grid arrays (interferogram arrays from test data), 
combinations of any type of polynomial in Section 4, and general free format vector data.  These variables may be mixed 
and matched as desired.  In fact, a finite element model is not required since SigFit can internally create a mesh for any 
common optical surface type. 

 
3.0 EXAMPLE:  MIRROR MOUNT FLATNESS REQUIREMENT 

 
The lightweight mirror in Figure 1 is attached to the metering structure by bipod flexures and a mount plate.  The mount 
plate is bolted to the metering structure, so any non-flatness or non-coplanarity of the attachment plates will cause 
bending of the mirror.  As part of the design specification of the mirror mount plate and metering structure, flatness and 
coplanarity must be specified.  Optomechanical analysis is used to relate mount flatness to the optical requirement on 
mirror surface RMS.  In a finite element model, individual load cases of unit flatness mismatch and non-coplanarity at 
each mount are applied.  In this example, the mismatch at a single mount is represented as three load cases:  radial 
rotation of 0.0001 radian (flatness) (in Figure 2a), circumferential rotation of 0.0001 radian (flatness), and axial 
displacement of 0.0020 inch (non-coplanarity) (in Figure 2b).    
 



  
(a)                                                                                       (b) 

Figure 1:  Lightweight mirror with 3 edge mounts 
(a) top view,  (b) bottom view 

 

            
 

(a)                                                                            (b) 
Figure 2: Surface deformations with Best-Fit plane removed 

(a) radial rotation of mount,  (b) z offset of mount 
 
For the Monte Carlo analysis in SigFit, the random variables were assumed to be uniformly distributed over the range of 
plus to minus the input value (i.e. for flatness the slopes range from +0.0001 to -0.0001 radian).  SigFit results include 
mean, standard deviation, maximum value, minimum value and user specified percentile.   In Table 1 below, the 90 
percentile results are presented for surface RMS and the amplitude of the low order Zernikes for 1000 sets of random 
variables.  The units used in the table are waves HeNe (0.6328 microns).  The table shows that 0.0020 inch of 
coplanarity is much more significant than the slope errors.  Also, the dominate response is primary astigmatism with 
very little power amplitude.  This approach can be used to determine realistic mechanical tolerance based on optical 
response quantities. 
 
 



  90 percentile results from Radial Circumf Co-
  1000 Monte Carlo analyses All terms Flatness Flatness planarity

9 variables 3 variables 3 variables 3 variables
(waves) (waves) (waves) (waves)

N M RMS (-BFP) 0.02762 0.00648 0.00104 0.02737
2 0 Power (Defocus) 0.00020 0.00000 0.00021 0.00000
2 2 Pri Astigmatism-A 0.04532 0.01500 0.00145 0.04280
2 2 Pri Astigmatism-B 0.04410 0.01543 0.00160 0.04413
3 1 Pri Coma-A 0.00038 0.00001 0.00007 0.00037
3 1 Pri Coma-B 0.00038 0.00001 0.00006 0.00039
3 3 Pri Trefoil-A 0.00175 0.00390 0.00000 0.00000
3 3 Pri Trefoil-B 0.00022 0.00000 0.00023 0.00000
4 0 Pri Spherical 0.00004 0.00000 0.00004 0.00000
4 2 Sec Astigmatism-A 0.00235 0.00080 0.00011 0.00237
4 2 Sec Astigmatism-B 0.00229 0.00087 0.00011 0.00226
4 4 Pri Tetrafoil-A 0.00255 0.00055 0.00009 0.00253
4 4 Pri Tetrafoil-B 0.00247 0.00057 0.00008 0.00246  

Table 1:  Mount flatness results from Monte Carlo analyses 
 
 
 
 

4.0 COEFFICIENT OF THERMAL EXPANSION VARIABILITY REQUIREMENT 
 
Variability of CTE can be a significant cause of mirror surface distortion.  The variability can come from boule to boule 
of glass, or within a single boule there may be variation through the thickness or radially.   When a lightweight mirror is 
fabricated, the variation can be distributed through the front and rear faceplates and core structure.  For segmented 
mirrors, these variations will occur from segment to segment.  In the following simple example (Figure 3), the CTE in 
each segment is treated as a normally distributed variable.  The FE model was run with a unit thermal load on each 
segment as a separate subcase.  These subcases were brought into SigFit for a Monte Carlo analysis. 
 

 
(a)                                                                 (b) 

Figure 3:  (a) segmented mirror model,  (b) CTE variation by segment 
 
If the mean CTE was zero with a standard deviation of 1 ppm, then the Monte Carlo results for 10,000 analyses are 
shown in Table 2.  Since the driving force in each subcase is the product of CTE and temperature, this analysis 



procedure could be used to determine thermal control requirements rather than CTE requirements, or in combination 
with CTE requirements.  

Surface Mean   StDev      Max    95% 5%   Min    
RMS 1.37 0.48 3.53 2.23 0.66 0.15  

Table 2: Monte Carlo analysis results on surface RMS error due to CTE variation 
 
 

5.0 ADAPTIVE MIRROR ACTUATOR RESOLUTION REQUIREMENT 
 
Adaptive mirror analysis is usually conducted with continuously variable actuator strokes.  In reality, actuators have a 
resolution which limits their accuracy.   To understand the effect of actuator resolution, a Monte Carlo analysis can 
predict residual surface RMS caused by resolution limits.   The adaptive mirror shown in Figure 4 is sitting on a 3 point 
mount with 15 force actuators.  For a 1g axial gravity load (RMS = 3.00λ), the actuators are able to correct 98% of the 
elastic distortion resulting in RMS = 0.052λ.  If the force actuators had a resolution of +/-0.10 Lb, the Monte Carlo 
analysis predicts the mean residual surface error would increase to 0.060λ and the 95 percentile surface error would be 
0.079λ.  The analysis results can be used to determine the actuator resolution required to meet optical performance 
requirements on surface RMS. 
 
 

      
(a)                                                                                    (b) 

Figure 4:  Adaptive mirror model 
(a) model with actuators,  (b) 1g deformation corrected by actuators 

 
 

6.0 TELESCOPE LINE-OF-SIGHT REQUIREMENT 
 
 
A simple telescope in Figure 5 has long composite tubes supporting the secondary mirror assembly.  It may be necessary 
to determine the requirement on coefficient of thermal expansion (CTE) variability of the tubes.  A finite element model 
was run with 9 loadcases, each representing a CTE variation of a single tube.  The variations considered were uniform 
CTE variation, linear gradient in radial direction (long dimension of the cross-section) and a linear gradient in the 
circumferential direction (short dimension of the cross-section).  Deformed plots for a single loadcase are shown in 
Figure 6.   For specific (known) CTE variations the results can be linearly combined to give the net effect.  For unknown 
CTE variations treated as random variables, the results must be combined using Monte Carlo techniques. Both the line-
of-sight (LoS) calculation and the Monte Carlo simulation were run in SigFit. 
 



 
Figure 5:   Simple telescope model 

 
 
 
 
 

 
(a)                                                  (b)                                                  (c) 

Figure 6, Deformed shapes for CTE variations on a single strut 
(a) uniform,  (b) radial gradient, (c) circumferential gradient 

 
The results of the Monte Carlo simulation of 1000 variations are given in Table 3.   As expected, the uniform CTE has 
the largest effect.  This tool could now be used to specify allowable tolerances on the CTE variability to maintain LoS 
error within required limits. 

 



         LoS Error (mm) per degree C
CTE Variations    Mean     StDev    Max    90%-tile
All 3 Var 0.0251 0.0116 0.0615 0.0406
Uniform Var only 0.0238 0.0108 0.0515 0.0385
Radial Var only 0.0069 0.0031 0.0148 0.0111
Circumf Var only 0.0022 0.0010 0.0048 0.0036  

Table 3: LoS error for 1000 random variations 
 
 

7.0 SIGFIT CAPABILITIES OVERVIEW 
 
 
SigFit is a general purpose optomechanical analysis program.  The most common use of SigFit is to fit polynomials to 
deformed surfaces3,4.  SigFit offers a wide variety of surface geometries as shown in Table 3. The conic geometry may 
add any of the polynomial types listed. For each surface shape the optical segment may represent an arbitrary off-axis 
portion of the parent geometry, allowing a wide variety of ‘free form’ optics to be analyzed.  Disturbances to be 
analyzed (fit) include the types listed plus arbitrary linear combinations. SigFit writes the polynomials to files for direct 
input to the optics programs listed. In addition to fitting polynomials, SigFit can interpolate disturbances to rectangular 
grid arrays for input to optics programs or interferometers. 
 
Surface Shapes Polynomials Disturbances FE Programs Optics Programs
Flat Zernike Finite element results Nastran (all) CodeV
Conic Fringe Zernike Polynomials Ansys (all) Zemax
Biconic Annular Zernike Vector data Abaqus Oslo
Anamorphic Asphere Interferogram arrays Cosmos Interferometers
Grazing conic Forbes QCON Combinations of above
Ogive Forbes QBFS
Conic+any  poly XY   
Offset segments Legendre

Fourier‐Legendre  
Table 3:  Summary of SigFit fitting capabilities 

 
For adaptive optics, SigFit solves for actuator strokes to minimize surface RMS.  In addition, SigFit will use genetic 
optimization5 to find the best actuator locations to correct multiple load cases.  There are unique capabilities within 
SigFit for dynamic analysis (harmonic, random, transient) of optical systems.  For instance, the MTF effect of jitter can 
be determined in random response analysis. Key mode contributors to line-of-sight jitter are identified as well as 
individual surface contributors. SigFit can also analyze thermo-optic effects (change in index with temperature) and 
stress-optic effects (change of index due to stress and stress birefringence).   
 
 

8.0 SUMMARY 
 
Monte Carlo techniques have been combined with integrated optomechanical analysis tools to determine mechanical 
tolerances based on optical performance measures, such as surface RMS and line-of-sight errors.  The examples included 
in this paper of mount flatness, material property variability, thermal control tolerance and actuator resolution, show the 
wide applicability and usefulness of the tool. 
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