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 ABSTRACT
Mechanical vibrations have a large impact on the optical performance of many systems. In order to accurately predict
optical performance, an integrated optomechanical analysis is required.  It is difficult to pass finite element vibration
data to optical programs since harmonic response includes phase angles due to damping, and random response has lost
all phase information.

This paper discusses a new technique to decompose harmonic and random response into pointing, focus, and wavefront
error components in an efficient manner.  This technique is compatible with commonly used error budgets.  A method to
identify key contributors to each error component is also presented.
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1.0 JITTER

1.1 Image Motion Equations
Line-of-sight (LOS) jitter is the apparent motion of a stationary object as viewed by an optical sensor.  Image motion is
often defined as the motion of the "gut ray" on the image plane (Figure 1).

Figure 1:  Image Motion

In an optical system with small motions, a linear equation using optical sensitivity coefficients [L] for rigid body
motions [T] of each optical surface1.  These sensitivities are typically obtained from an optical design code.
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1.2 Image Motion in FE Model
The image motion equations can be entered directly into most finite element (FE) programs. For example, in Nastran
linear equations may be entered as MPC data.  Care must be taken to insure that coordinate systems, sign conventions,
and units are transformed from the optical code correctly.  It is common for optical codes to use left-handed rotations in
degrees, while FE data must be in right-handed rotations in radians.

If the image motion equations are entered into the FE model, system level dynamic jitter may be output directly from a
dynamic response analysis in the FE program as a time history plot in transient, a frequency response plot in harmonic,
or a PSD plot in random response analysis.
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1.3 Flexible Optics
If an optic moves as a rigid body, then a single node in the FE model can represent each the optical surface motion. For
example, in an optical bench with many small optics, the model could look like Figure 2:

Figure 2: Lumped optics Figure 3: Flexible optics

For flexible optics, such as large primary mirrors (Figure 3), the "average" rigid body motion can be calculated by
interpolation elements (RBE3 in Nastran) or from linear equations as follows.  Let the best-fit rigid-body motions of a
surface be defined as a vector [T] of 6 terms:

Tx,Ty,Tz = translations along coordinate axes (Tx,Ty=decenters, Tz =bias)
Rx,Ry,Rz = rotations about coordinate axes (right-hand rule = +) (Rx,Ry=tilts)

Then the displacement of node i due to these motions is:
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Define the error (E) as the area-weighted (w) difference between the actual nodal displacements (dxi) and the rigid-body
values calculated above.
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To find the best-fit motions (Tx,Ty,Tz,Rx,Ry,Rz), minimize E, by taking partial derivatives with respect to each term and
setting the result to zero.  A typical equation is:
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After setting all 6 derivatives to zero, there are 6 simultaneous equations to solve.  Note that the axial corrected surface
displacements2 (dz′) is used in these calculations.

2.0 COMPONENT DISTORTION

2.1 Decomposition
When flexible optics distort, the distortion can be decomposed into average rigid body motion [T], power {P}, and left
over residual surface error {V}.   If the decomposition is conducted on the undamped, dynamic mode shapes
(eigenvectors) then all data is real (not complex), simplifying the mathematics.
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2.2 Harmonic and Random Response
Modal analysis techniques, commonly used for dynamic response, assume that the physical response is a linear
combination of the modal responses. In steady state harmonic response, the applied load is F = F eiω t and the resulting
displacement is U = U eiω t.  The harmonic equation is
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In the modal approach,
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where ζ mi is the modal participation factor for mode m at load step i. Substituting the assumed harmonic form of the
displacement vector and Equation (6) into the response Equation (5), canceling eiω t and premultiplying by Φ T gives,
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which is a series of uncoupled 1 DOF equations (assuming modal damping) to solve.  These uncoupled equations can be
written in the form,

imimimmi fkbm =++ ζζζ && , (8)

where m, b, k, f are modal mass, modal damping, modal stiffness and modal force, respectively. The solution to
Equation (8) is

         ζ mi = fmi / [(k – m ω 2) + ibω ]        (9)

where b=2c/cc.  Note that ζ  is complex containing both magnitude and phase.  Any response quantity such as
displacement {U} can be found from the modal displacements {φ} by eqn (6).

For optical performance calculation, efficiencies can be realized using this modal approach. For each surface, mode j
(Φ j) is decomposed into,

Tj = pointing vector  for the jth mode
Pj = power for the jth mode
Vj = the residual vector for the jth mode = Φ j -Tj - Pj

then, the net surface pointing error and the net surface power for each surface are obtained from,

jjn TT ∑= ς jjn PP ∑= ς (10)

and the net surface RMS is obtained from the combined residual vectors,

( )∑= jjn VRMSRMS ς . (11)

These techniques have been available in SigFit3 for some time.  The advantage over conducting the dynamic response
within an FE code is that the FE results cannot be decomposed easily.  In harmonic response, the FE results would
provide magnitude and phase information on each surface node.  Pointing error calculations must account for the
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difference in phase for each node.  If a random response is calculated, then all phase information about each node is lost
and pointing error (R-B motion in Figure 4) cannot be distinguished from surface distortion (surface RMS in Figure 5).

Figure 4: All RB motion, No elastic distortion                      Figure 5: No RB motion, All elastic distortion

The above rigid-body decomposition technique4 allows meaningful pointing and surface distortion calculations, even in
random response. As programmed in SigFit, the technique allows for identification of each modes contribution so that
design improvements can be made efficiently.   The limitation is that the distortion of each surface is a net surface RMS
effect that must be RSS'd to get a system response.  The method in the next section allows more detailed prediction of
system response.

3.0 INTEGRATED DYNAMIC RESPONSE

3.1 Notation
N = Total number of optical surfaces in model
T = Total number of Rigid-Body (R-B) and Zernike terms fit to each optical surface
M = Total number of dynamic modes used
i  = Load step number (either static load case, frequency step, or time step)

Skt
n  = Sensitivity matrix = Zernike (k) at exit pupil for each R-B / Zernike (t) at surface (n)

Dti
n  = Static displacement decomposition = fit each deformation case (i) with R-B /Zernike (t) at surface (n)

Ctm
n  = Mode decomposition = fit each mode (m) with R-B /Zernike (t) at surface (n)

Zki
0  = Zernikes (k) at output location (0) for load step (i)

3.2 System Wavefront
Zernike polynomials5 may be fit to any individual surface deformation6.  If each optical surface (n) in a static deformed
load case (i) are decomposed into rigid-body motions and Zernike coefficients Dti

n , then each Zernike (k) at the exit
pupil (0) can be approximated by a linear combination7
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The sensitivity matrix S is obtained from an optical design program.  In our work, a script was used to produce the large
S matrix from Code V.  A surface fitting program such as SigFit will calculate the D matrix for each load case.  SigFit
has been modified to read the S matrix and calculate and report Z along with the associated wavefront RMS, P-V and
contour plots.  This approximation in equation (12) is valid for linear systems in which the individual surface
deformations are accurately described by Zernike coefficients.

3.3 System Dynamic Response
For optical performance under dynamic loading,, efficiencies can be realized using the modal approach. If each mode Φ m
is decomposed into R-B and Zernike coefficients Cjm

n, the net dynamic response is the sum of modal contributions:
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The above calculations may be done in any order.  After the Zernike fit of each mode shape, one could multiply and
sum over surfaces (n) to obtain a modal result at the exit pupil:
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Then during the modal response analysis, each Zernike (k) at the exit pupil for load step (i) could be found more
efficiently by:

mikm
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Each Zernike coefficient may be plotted verses time (transient analysis) or verses frequency (harmonic analysis).  In a
random response analysis, the PSD of each Zernike coefficient may be output or the integrated 1-sigma response
reported.  In the SigFit implementation, each modes contribution to the  net surface RMS is reported, so major modal
contributors can be identified.  SigFit also outputs a net wavefront map for selected times or frequencies in a nodal file
format compatible with the FE graphics code allowing wavefront contours at the exit pupil.

4.0 ADVANTAGES

4.1 Conventional Design Process
In the conventional opto-mechanical design process, the optical design is completed first.  Next, the mechanical engineer
must cycle through designs to meet optical performance requirements.  However, to evaluate a design, the mechanical
engineer must pass the mechanical response to the optical engineer for evaluation as shown in Figure 6.  The overall
process is time-consuming and prone to error.
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Figure 6:  Conventional Opto-mechanical Design Process
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4.2 New Design Process
With the new system level response capability8 in SigFit, the design process can be streamlined.  When the optical
design is complete, the optical engineer runs a sensitivity analysis to obtain the sensitivity matrix.   The mechanical
engineer can then cycle through the mechanical design process (Figure 7) and make design decisions based on optical
performance, without the conventional passing of data back and forth.
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Figure 7:  New Opto-mechanical Design Process

5.0 SUMMARY

Techniques and tools have been discussed for calculating optical performance as a function of dynamic loading.  The
new technique using optical sensitivities offers new efficiencies in the opto-mechanical design process.
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