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 ABSTRACT
Zernike polynomials are an orthogonal set over a unit circle and are often used to represent surface distortions from FEA
analyses.  There are several reasons why these coefficients may lose their orthogonality in an FEA analysis.  The effects,
their importance, and techniques for identifying and improving orthogonality are discussed. Alternative representations
are presented.
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1.0 CONTINUOUS DATA

1.1 Orthogonal Functions
Two functions F1 and F2 are orthogonal over a unit circle if:
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For axisymmetric functions with no Θ  variation, the above equation reduces to:
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Consider the axisymmetric functions:
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which are the Seidel terms for Power and Primary Spherical.  Integrating over the unit circle shows that these are not
orthogonal:
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However if the functions are modified as follows,
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orthogonality is obtained
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The functions Φ 1 and Φ 2 above are the Zernike polynomials for Power and Primary Spherical.  Note that these functions
are also orthogonal to Bias (Φ 0=1).  For example, the integral of Bias and Power is:
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Thus Zernike polynomials were orthogonalized by subtracting appropriate amounts of the lower order terms.  The radial
variation of Bias, Power, and Primary Spherical are shown in Figure 1.

Figure 1.  Standard Zernike Bias, Power, Primary Spherical

Products of sine and cosine functions of different order are also orthogonal over a unit circle:
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making Zernike trefoil orthogonal to Zernike tetrafoil.

1.2 Zernike polynomials
The general form of the Zernike series
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and ρ is the dimensionless normalized radius and Θ  is the polar angle. Additional restrictions on the series include that
terms only exist when N-M is even and N>M.  The “Standard Zernike” series are given in Born and Wolf1 and include
as many terms as desired.  A listing of the Zernike polynomials is provided in the Appendix.



The “Standard Zernike” polynomials as defined above have a value of 1.0 at ρ=1.  CodeV uses this normalization. The
surface RMS of each CodeV unit Zernike polynomial is:

Unit axisymmetric polynomial surface RMS = ( )[ ]1
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 Zemax scales the standard Zernikes so that the RMS of each term has a value 1.0 over the unit circle.  The Zemax scale
factors are:

Axisymmetric terms = 1+N (1.11)

Non-axisymm terms = ( )12 +N

Thus Zemax Power and Primary Spherical are

( )123~ 2
1 −=Φ ρ ( )1665~ 24

2 +−=Φ ρρ (1.12)
Thus the same finite element surface displacement is represented by different magnitudes in Zemax and CodeV.  Unit
values of Zemax and CodeV Power and Primary Spherical are shown in Figure 2.

Figure 2.  1 Wave of Power and Primary Spherical

To confuse matters more, CodeV and Zemax place the polynomials in a different order.  For instance primary spherical
is term 13 in CodeV and term 11 in Zemax.  A comparison list of CodeV and Zemax ordering is given in the Appendix.

An alternate set of Zernike terms is called the “Fringe Zernike” set, which is composed of 37 low order terms, including
the axisymmetric terms for ρ10 and ρ12.  The normalization for Fringe Zernikes require that they have a value 1.0 at ρ=1,
like the Standard Zernikes above.  For this particular set, both CodeV and Zemax use the same ordering and
normalization.  Therefore, Zemax Power for “Standard Zernikes” is scaled  to RMS=1, but Zemax Power for “Fringe
Zernikes” is not.



1.3 Odd geometries
Zernike orthogonality is lost on any surface other than a full unit circle. Consider the primary mirror of a Cassegrain
telescope which includes a central hole of ρ=0.2.  The orthogonality of Bias and Power (Eqn 7) is now lost:

( )( ) 012.0
2
04.

4
0032.

2
1

4
2

21212 2
1

2.0

≠=



 





 −−





 −Π=−Π ∫ ρρρ d (1.13)

As one would expect, orthogonality is also lost on a non-circular geometry, such as a square optic:
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2.0 DISCRETE DATA

1.1 Numerical Integration
Finite element analyses provide surface distortions at discrete locations on an optic.  For discrete data evaluated at node
k, equation (1.1) becomes:

021 =ΦΦ∑ kk
k

k A (2.1)

where Ak is the area associated with node k.  Using numerical integration on the Bias(Φ 0), Power(Φ 1), and Primary
Spherical(Φ 2) terms, the residual error verses the number of equally spaced radial integration points K over the unit
circle is shown in Table 1.  The diagonal terms Φ jΦ j represent the RMS2 and the off-diagonal terms Φ iΦ j represent the
coupling or non-orthogonality.

Table 1: Numerical integration on a unit circle
    K      Φ 0Φ 0      Φ 1Φ 1      Φ 2Φ 2      Φ 0Φ 1      Φ 0Φ 2      Φ 1Φ 2
   10    1.0000    .34660    .23838    .00500    .01990    .02460
   20    1.0000    .33666    .20990    .00125    .00499    .00623
   50    1.0000    .33387    .20160    .00020    .00080    .00100
  100    1.0000    .33347    .20040    .00005    .00020    .00025
  200    1.0000    .33337    .20010    .00001    .00005    .00006
  500    1.0000    .33334    .20002    .00000    .00001    .00001
 1000    1.0000    .33333    .20000    .00000    .00000    .00000

Note that the coupling terms drop off as K2.

SigFit prints this orthogonality check for surface fitting to any finite element mesh pattern. The data in Table 2 is based
on an area weighting calculated internally in SigFit for the finite element areas projected to a flat plane normal to the
optical axis.  For the polar meshes shown in Figures 3 (K=10) and Figure 4 (K=20), the Table 2 results correlate closely
to Table 1.  In fact, the finite element area calculation provides more accurate answers than the area calculation in the
Table 1 integration.



       
Figure 3. Polar mesh with K=10                 Figure 4. Polar mesh with K=20

Table 2: SigFit integration on polar meshes with projected areas
    K      Φ 0Φ 0      Φ 1Φ 1      Φ 2Φ 2      Φ 0Φ 1      Φ 0Φ 2      Φ 1Φ 2
   10    1.000     .3462     .2370     .0033     .0193     .0220
   20    1.000     .3366     .2095     .0008     .0049     .0056

Table 3 shows the results for area weighting based on the true curved surface area and Table 4 shows the results for all
weighting terms set to 1.0.

Table 3: SigFit integration on polar meshes with true curved surface areas
    K      Φ 0Φ 0      Φ 1Φ 1      Φ 2Φ 2      Φ 0Φ 1      Φ 0Φ 2      Φ 1Φ 2
   10    1.000     .3463     .2374     .0090     .0195     .0246
   20    1.000     .3366     .2097     .0066     .0049     .0079

Table 4: SigFit integration on polar meshes with area weighting set to 1.0
    K      Φ 0Φ 0      Φ 1Φ 1      Φ 2Φ 2      Φ 0Φ 1      Φ 0Φ 2      Φ 1Φ 2
   10    1.000     .4736     .3346    -.2271     .2105    -.1064
   20    1.000     .4677     .3191    -.2779     .2105    -.1640

As can be seen from the tables, the projected area provides the best results.  Equally weighting nodes (Table 4) which
represent different areas provides poor results and should not be used.

1.2 Comparison to dynamic modes
Zernike polynomials are not the only functions which represent orthogonal functions over a unit circle.  The dynamic
mode shapes for a uniform thickness circular plate are orthogonal with respect to the mass matrix. For any 2 distinct
modes i and j,

0=ΦΦ j
T
i M (2.2)



For discrete data, the above can be written,
0=ΦΦ∑ kjk

k
ik M (2.3)

For uniform thickness plates, the mass (Mk) at node k is simply the area (Ak) times thickness and mass density.

The dynamic mode shapes for circular plates2 have radial coefficients which are Bessel functions rather than simple
polynomials like Zernikes, but the azimuthal terms are identical.    The complexity of Bessel functions makes these
shapes less desirable.

The dynamic mode shapes were fit with Zernikes in SigFit as shown in Table 5  for the lowest elastic modes. Mode 1
and 2 in Figure 5 are a mode pair which contain only astigmatism terms, of which roughly 95% is primary astigmatism.
Mode 3 in Figure 6 contains only axisymmetric terms, of which 90% is power.  Other modes  contained similar effects.
For example, Mode pair 4 & 5 contained only trefoil terms, while mode pair 6 & 7 contained only coma terms, and mode
pair 8 & 9 contained only tetrafoil terms.  Essentially, the dynamic modes are very similar to the Zernike polynomials
except for slight differences in the radial variations.

Table 5.  Zernike fit to dynamic modes
  ==============================================================================
  Sigmadyne, Inc.       SigFit  Version=2002-r1            05-Jun-02  12:33:26
  ------------------------------------------------------------------------------
  CIRCULAR PLATE - 360 DEG -  FREE FREE MODES THIN PLATE
  FIRST ELASTIC MODE SHAPE
  ------------------------------------------------------------------------------
    Order    Aberration        Magnitude   Phase    Residual    Residual
     N  M                      (Waves)    (Deg)       RMS         P-V
            Input(wrt zero)                           .4335      2.0000
     2  2   Pri Astigmatism     1.05943   -12.9       .0200       .1133
     4  2   Sec Astigmatism      .06225    77.1       .0015       .0108
     6  2   Ter Astigmatism      .00540   -12.9      0.0000       .0001
     8  2   Qua Astigmatism      .00005   -12.9      0.0000       .0001

  ------------------------------------------------------------------------------
  THIRD ELASTIC MODE SHAPE
  ------------------------------------------------------------------------------

    Order    Aberration        Magnitude   Phase    Residual    Residual
      N  M                      (Waves)    (Deg)       RMS         P-V
             Input(wrt zero)                           .4978      1.7421
      0  0   Bias                 .00003      .0       .4978      1.7421
      2  0   Power (Defocus)     -.85604      .0       .0579       .2085
      4  0   Pri Spherical        .12841      .0       .0057       .0300
      6  0   Sec Spherical       -.01499      .0       .0002       .0008
      8  0   Ter Spherical        .00049      .0      0.0000       .0001
     10  0   Qua Spherical       -.00002      .0      0.0000      0.0000
     12  0   Qin Spherical       0.00000      .0      0.0000      0.0000

             
Figure 5. First Elastic Mode Shape                        Figure 6. Third Elastic Mode Shape



3.0 ZERNIKE POLYNOMIALS

3.1 Fitting
The mathematics of fitting Zernike polynomials to finite element results is well documented3.

Uk  =  displacement of grid point k from a finite element solution

Zk  =  Σj Cj Fjk  =  displacement of grid point k as a sum of Zernike coefficients

Fjk  =   surface displacement of grid k for  a unit value of coefficient j

Wk  =  fraction of area at grid k to the full optic area

Let the error be represented as:

E  =  Σk Wk  (Uk - Zk)2 (3.1)

To find the coefficients Cj, minimize the error:

dE/dCj = 0 (3.2)

The resulting equations are a linear system, which is easily solved.

[H] {C}  =  {R} (3.3)

where Hji  =  Σk Wk  Fjk  Fik (3.4)

and Rj  =  Σk Wk  Uk  Fjk (3.5)

How well the Zernike coefficients represent the deformed shape is best represented by the residual error after all fitted
terms have been removed (see Table 5).  In SigFit the residual error is provided as a numerical value for RMS and Peak-
Valley and in the form of a nodal file for graphical viewing.

1.2 Coupling
Coupling of Zernikes depends on the form of the optic as well as the finite element mesh.

            
Figure 7. Regular “isomesh” model             Figure 8. Irregular “automesh” model



The irregular mesh in Figure 8 causes coupling of terms which are not coupled in a regular mesh like Figure 7.  In the
regular mesh, axisymmetric terms are coupled only to other axisymmetric terms.  In the irregular mesh, axisymmetric
terms pick up additional coupling with astigmatism, coma, trefoil, etc.

1.3 Fitting Examples
The model in Figure 9 was mounted on 3 points and loaded with 1g along the optical axis.  Table 6 shows the Zernike fit
results from SigFit.  The residual surface RMS after all terms removed was .05λ showing that 98% of the surface
distortion is represented by the Zernike coefficients.  The input and residual surface contour plots in Figure 9 and 10 give
a graphical representation of what was not represented by the Zernikes.  In this example, we can see that some local
distortion around mounts is not well represented, but the amount is small.

                     
Figure 9. 1g on 3point mount input surface       Figure 10.  1g with all Zernikes removed

                                Table 6:  Zernike fit to !g Z on 3 point mount
  ==============================================================================
  Sigmadyne, Inc.       SigFit  Version=2002-r1            23-May-02  09:15:29
  ------------------------------------------------------------------------------
      Order    Aberration        Magnitude   Phase    Residual    Residual
     K  N  M                      (Waves)    (Deg)       RMS         P-V
               Input(wrt zero)                          2.9302     13.2711
     1  0  0   Bias                -.05862      .0      2.9307     13.2711
     2  1  1   Tilt                 .00000      .0      2.9307     13.2711
     3  2  0   Power (Defocus)      .73829      .0      2.9085     13.2711
     4  2  2   Pri Astigmatism      .00000      .0      2.9085     13.2711
     5  3  1   Pri Coma             .00000      .0      2.9085     13.2711
     6  3  3   Pri Trefoil         7.89198      .0       .5666      2.9184
     7  4  0   Pri Spherical       -.59998      .0       .5106      2.5290
     8  4  2   Sec Astigmatism      .00000      .0       .5106      2.5290
     9  4  4   Pri Tetrafoil        .00000      .0       .5106      2.5290
    10  5  1   Sec Coma             .00000      .0       .5106      2.5290
    11  5  3   Sec Trefoil         1.56592    60.0       .1905      1.1336
    12  5  5   Pri Pentafoil        .00000      .0       .1905      1.1336
    13  6  0   Sec Spherical        .13964      .0       .1814       .9335
    14  6  2   Ter Astigmatism      .00000      .0       .1814       .9335
    15  6  4   Sec Tetrafoil        .00000      .0       .1814       .9335
    16  6  6   Pri Hexafoil         .52198      .0       .1206       .8358
    17  7  1   Ter Coma             .00000      .0       .1206       .8358
    18  7  3   Ter Trefoil          .24919      .0       .0969       .5968
    19  7  5   Sec Pentafoil        .00000      .0       .0969       .5968
    20  8  0   Ter Spherical        .01856      .0       .0967       .6089
    21  8  2   Qua Astigmatism      .00000      .0       .0967       .6089
    22  8  4   Ter Tetrafoil        .00000      .0       .0967       .6089
    23  8  6   Sec Hexafoil         .29821    30.0       .0536       .2852

The same model was given random set of displacements in Figure 11.  As can be seen in the Zernike fit in Table 7, the
residual RMS never decreases significantly, even though large values of coefficients are calculated.  Basically, the



Zernikes are useless since the shape can not be represented by the low order Zernikes. Figure 12 shows graphically that
the residual surface is of the same order as the input surface.  To pass this data to an optics code, a finely spaced
interferogram array file is required as in Section 4.

                                          

Figure 11. Random Input data -BFP removed                      Figure 12 Random - After all Zernikes removed

                                       Table 7.  Zernike Fit to Random Data
  ==============================================================================
  Sigmadyne, Inc.       SigFit  Version=2002-r1            11-Jun-02  13:35:26
  ------------------------------------------------------------------------------
      Order    Aberration        Magnitude   Phase    Residual    Residual
     K  N  M                      (Waves)    (Deg)       RMS         P-V
               Input(wrt zero)                          3.3806     15.1475
     1  0  0   Bias                 .07668      .0      3.3815     15.1475
     2  1  1   Tilt                 .01315   147.3      3.3815     15.1548
     3  2  0   Power (Defocus)     -.17522      .0      3.3859     15.3773
     4  2  2   Pri Astigmatism     1.43340    78.0      3.3296     15.7127
     5  3  1   Pri Coma            1.61614   -44.5      3.2794     14.7934
     6  3  3   Pri Trefoil          .03584    30.9      3.2793     14.8031
     7  4  0   Pri Spherical       2.43998      .0      3.0992     14.6889
     8  4  2   Sec Astigmatism     2.08090   -82.4      3.0205     17.2080
     9  4  4   Pri Tetrafoil       1.96088    29.2      2.9517     16.3975
    10  5  1   Sec Coma             .52259   118.9      2.9473     15.9743
    11  5  3   Sec Trefoil         1.78742    20.9      2.8949     18.2172
    12  5  5   Pri Pentafoil       1.62102    -9.8      2.8536     18.3254

4.0 ALTERNATIVE FORMS

4.1 Other polynomials
Depending on the optical program to be used, other polynomials may be used to fit deformed data.  For example in
CodeV, both aspheric and X-Y polynomials may be used to describe a surface.

( )
j

j
jA

ck

c
Z ρ

ρ
ρ ∑+
+−+

=
22

2

)111
(4.1)

( )
NM

j
j yxC

ck

c
Z ∑+

+−+
=

22

2

)111 ρ
ρ

(4.2)



Typically, the X-Y polynomials could fit rectangular mirrors which may have rectangular stiffening structure.  Whereas,
the aspheric polynomials could be used to fit axisymmetric behavior to a very high order. SigFit may optionally fit either
of the above polynomial sets.

A variation of the Zernike polynomials exist which are orthogonal over a unit circle containing a hole, as in the
Cassegrain primary mirror.  Since most optic programs do not allow these as input, they are not discussed here.

4.2 Array interpolation
When FEA data such as pocket quilting in a lightweight mirror is not well described by low order polynomials, an
alternate format is available.  All optical programs allow array data input since that is the form of interferometric test
data.  The two surface distortions in Figure 9 and 11 were interpolated in SigFit to provide the array data shown in
Figures 13 and 14.  When compared to the original surfaces, one can see that the interferogram is an accurate
representation of the data. For the smooth data in Figure 9 either representation is good, but for the random data in
Figure 11, the array is a much better representation than the Zernike coefficients.

                            
Figure 13. Array for 3 point mount                              Figure 14. Array for Random data

5.0 SUMMARY

Standard finite element results are usually not in a convenient form for opto-mechanical analysis.  The output must be
processed in an interface program such as SigFit4 to convert it to Zernike polynomials .  In the event that the Zernikes do
not well represent the data, then interferogram (rectangular array) files must be created.   How well the Zernikes fit the
data can be determined by comparing the residual RMS to the input RMS, and by plotting the residual surface.  For most
typical FE models the resulting Zernikes will not be truly orthogonal.  The lack of orthogonality does not prevent the
Zernikes from being a useful representation of the surface distortion.
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7.0 APPENDIX

The following are Zernike numbering and normalization:

 N   M   CoV   Zmx   ZFR   Name         Equation
 0   0   Z01   Z01   Z01   Bias         (1)                    R=Normalized Radius
 1   1   Z02   Z02   Z02   Tilt-X       (R)cos(T)              T=Theta measured from X
 1   1   Z03   Z03   Z03   Tilt-Y       (R)sin(T)              N=Radial wave #
 2   0   Z05   Z04   Z04   Power        (2R2-1)                M=Circumferential wave #
 2   2   Z04   Z06   Z05   1-Astg-X     (R2) cos(2T)            CoV=CodeV Std Zernike order
 2   2   Z06   Z05   Z06   1-Astg-Y     (R2)sin(2T)            Zmx=Zemax Std Zernike order
 3   1   Z08   Z08   Z07   1-Coma-X     (3R3-2R)cos(3T)        ZFR=Fringe Zernike order
 3   1   Z09   Z07   Z08   1-Coma-Y     (3R3-2R)sin(3T)
 3   3   Z07   Z10   Z10   1-Tref-X     (R3)cos(3T)            Zemax normalization adds
 3   3   Z10   Z09   Z11   1-Tref-Y     (R3)sin(3T)            coeff =sqrt(N+1)    if M=0
 4   0   Z13   Z11   Z09   1-Sphr       (6R4-6R2+1)            coeff =sqrt(2(N+1)) if M not 0
 4   2   Z12   Z12   Z12   2-Astg-X     (4R4-3R2)cos(2T)
 4   2   Z14   Z13   Z13   2-Astg-Y     (4R4-3R2)sin(2T)       X term=Acos()
 4   4   Z11   Z14   Z17   1-Tetr-X     (R4) cos(4T)            Y term=Bsin()
 4   4   Z15   Z15   Z18   1-Tetr-Y     (R4)sin(4T)            Magnitude=sqrt(A^2+B^2)
 5   1   Z18   Z16   Z14   2-Coma-X     (10R5-12R3+3R) cos(T)   Phase=(1/M)atan(B/A)
 5   1   Z19   Z17   Z15   2-Coma-Y     (10R5-12R3+3R)sin(T)
 5   3   Z17   Z18   Z19   2-Tref-X     (5R5-4R3) cos(3T)
 5   3   Z20   Z19   Z20   2-Tref-Y     (5R5-4R3)sin(3T)
 5   5   Z16   Z20   Z26   1-Pent-X     (R5) cos(5T)
 5   5   Z21   Z21   Z27   1-Pent-Y     (R5)sin(5T)
 6   0   Z25   Z22   Z16   2-Sphr       (20R6-30R4+12R2-1)
 6   2   Z24   Z24   Z21   3-Astg-X     (15R6-20R4+6R2) cos(2T)
 6   2   Z26   Z23   Z22   3-Astg-Y     (15R6-20R4+6R2)sin(2T)
 6   4   Z23   Z26   Z28   2-Tetr-X     (6R6-5R4) cos(4T)
 6   4   Z27   Z25   Z29   2-Tetr-Y     (6R6-5R4)sin(4T)
 6   6   Z22   Z28         1-Hexa-X     (R6) cos(6T)
 6   6   Z28   Z27         1-Hexa-Y     (R6)sin(6T)
 7   1   Z32   Z30   Z23   3-Coma-X     (35R7-60R5+30R3-4R) cos(T)
 7   1   Z33   Z29   Z24   3-Coma-Y     (35R7-60R5+30R3-4R)sin(T)
 7   3   Z31   Z32   Z30   3-Tref-X     (21R7-30R5+10R3) cos(3T)
 7   3   Z34   Z31   Z31   3-Tref-Y     (21R7-30R5+10R3)sin(3T)
 7   5   Z30   Z34         2-Pent-X     (7R7-6R5) cos(5T)
 7   5   Z35   Z33         2-Pent-Y     (7R7-6R5)sin(5T)
 7   7   Z29   Z36         1-Sept-X     (R7) cos(7T)
 7   7   Z36   Z35         1-Sept-Y     (R7)sin(7T)
 8   0   Z41   Z37   Z25   3-Sphr       (70R8-140R6+90R4-20R2+1)
 8   2   Z40   Z38   Z32   4-Astg-X     (56R8-105R6+60R4-10R2) cos(2T)
 8   2   Z42   Z39   Z33   4-Astg-Y     (56R8-105R6+60R4-10R2)sin(2T)
 8   4   Z39   Z40         3-Tetr-X     (28R8-42R6+15R4) cos(4T)
 8   4   Z43   Z41         3-Tetr-Y     (28R8-42R6+15R4)sin(4T)
 8   6   Z38   Z42         2-Hexa-X     (8R8-7R6) cos(6T)
 8   6   Z44   Z43         2-Hexa-Y     (8R8-7R6)sin(6T)
 8   8   Z37   Z44         1-Octa-X     (R8) cos(8T)
 8   8   Z45   Z45         1-Octa-Y     (R8)sin(8T)
 9   1   Z50   Z46   Z34   4-Coma-X     (126R9-280R7+210R5-60R3+5R) cos(T)
 9   1   Z51   Z47   Z35   4-Coma-Y     (126R9-280R7+210R5-60R3+5R)sin(T)
 10  0   Z61   Z56   Z36   4-Sphr       (252R10-630R8+560R6-210R4+30R2-1)
 12  0   Z73   Z79   Z37   5-Sphr       (924R12-2772R10+3150R8-1680R6+420R4-42R2+1)


