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 ABSTRACT
In an effort to get larger primary mirrors for both space and ground-based telescopes, many proposed designs are either
segmented or adaptive or both.  This paper discusses many practical analysis issues concerning the prediction of
performance of these large mirrors.  Topics include 1) correctability with and without focus control, 2) dynamic response
analysis, 3) segment pointing and surface RMS.
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1.0 SEGMENTED AND ADAPTIVE OPTICS

1.1 Segmented Optic
In an effort to create very large primary mirrors, an optic may be subdivided into several individual pieces (Fig 1-A) as
in the Keck Telescope.  This facilitates manufacturing and processing.

1.2 Deployable Optic
For large space-based mirrors, a segmented primary mirror may be folded into a smaller package to fit a launch vehicle.
On orbit, the segments fold out (Fig 1-B) into a useable array, as in the proposed NGST.

1.3 Adaptive Optic
As optics get larger and lighter, they become more flexible. Actuators may be used to deform a mirror (Fig 1-C) to
correct unwanted aberrations in the image, typically due to gravity, thermal, or atmospheric distortions.

                
Figure 1-A: Segmented    Figure 1-B:  Deployable Figure 1-C: Adaptive

The opto-mechanical analysis of these systems requires special tools and modeling techniques which are addressed in
the following sections.

1.4 Example
Throughout this paper a simple, segmented, adaptive primary mirror (Fig 2-A) is used as an example. All 7 segments are
identical lightweight, fused silica construction, each with a 3 point connection to a titanium truss-like mount (Fig 2-B).
For illustration purposes, the discussion may refer to the 7 member assembly or simply to the center segment .

Figure 2-A: Segmented Mirror Example Figure 2-B:  Mirror Support Structure



2.0 SURFACE DEFORMATION DESCRIPTION

2.1 Scalar Surface Deviation
When quantifying the deformation of an optical surface, it is
necessary to compute a quantity we shall refer to as the scalar
surface deviation 3.  The scalar surface deviation is computed
from the optical surface geometry and the displacement vector,
dX, as obtained from a finite element analysis. This scalar
surface deviation physically represents the deviation of the
deformed optical surface from the undeformed optical surface at
each point on the optical surface. This quantity may be
expressed as a deviation along the optical axis, dz*, or normal to
the surface, dn*.  Figure 3 shows a pictorial representation of
how the scalar surface deviation is defined.

If the grids on an optical surface contain neither radial displacements nor azimuthal rotations, then the axial scalar
surface deviation, dz*, is equal to the axial component of dX, dz. If the azimuthal rotations are absent then the normal
scalar surface deviation, dn*, is equal to the normal component of dX, dn. However, if the radial displacements and/or
azimuthal rotations are nonzero, then determination of the scalar surface deviations, dz* and dn*, are not as trivial.
Consider the undisplaced point located at r0,θ0,z0 on the conic surface given by,
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with curvature c, radial location r, conic constant k, and SAG z.  Suppose this point displaces dr, dz and rotates dθt due to
rigid motions and elastic deformations of the optical surface.  The exact axial and normal surface scalar deviations are
referred to as dz* and dn* but are unobtainable as shown in Figure 3. However, these quantities are well approximated
by the following first order Taylor series small displacement approximations:
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Notice that Equations 2.1 (2) and 2.1 (3) include the effect of all of the rigid body motions of the optical surface in the
calculation of the scalar surface deviation.  However, these relations may be modified to compute the surface scalar
deviations without the decenter rigid body motions, dcx, dcy, as follows:
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Equations 2.1 (4) and 2.1 (5) can be linearized by dropping the nonlinear term, ( ) ( )( )θθθθ cossin yx dd − . The resulting
relations become,
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Notice that the linearized approximation to the normal surface deviation is equal to the normal surface displacement
while the axial scalar surface deviation in Equation 2.1 (6) involves all of the translational displacements, dx, dy, and dz
as well as the rigid body optical surface decenters.

It is important to note that the Taylor series approximation in Equation 2.1 (6) becomes less valid for decreasing r#,
where r# is defined as the ratio of the optical surface diameter to its radius of curvature.  However, this limitation
becomes significant only for very low r#s near about 0.6.
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Figure 3:  Surface Deformations



The rotational degrees of freedom without the effect of the decenters can be approximated by a first order Taylor series
similar to Equation 2.1 (4).

( ) ( )( ) ( ) ( )

( ) ( )22

2
0

2

cossin
)(

cossin'

yx

yx
yxt

dcdydcdx

r
d

r
d

r
rz

ddd

−+−

×











∂
∂+∂

∂−+
∂

∂+−= θθθθθθθθθ 2.1 (8)

which as in Equation 2.1 (6) linearizes to,
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The use of either normal or axial scalar surface deviation as discussed above is application dependent and becomes an
increasingly important choice with decreasing r#.  For example, if finite element results are to be formatted for import
into an optical analysis code, the user should make a choice consistent with the convention used by the optical analysis
software.

The necessity of computing the scalar surface deviation instead of simply using the axial displacement from the finite
element analysis results can be demonstrated with an example.  The following plots show a mirror with a uniform
temperature increase causing an increase in the radius of curvature.  The original finite element Z displacements (Fig 4-
A) show the outer edge rising relative to the center (decreasing RoC), but a plot of the scalar surface deviation (Fig 4-B)
shows the outer edge falls relative to the center (increasing RoC).

These two representations of the surface deformation are of opposite sign while the scalar surface deviation shows the
correct flattening of the mirror.  Therefore, use of the scalar surface deviation in computation of optical surface
deformation is very important.

  
Figure 4-A: Original Z displacements (dz) Figure 4-B: Scalar Surface Deviation (dz′)

2.2 Rigid Body Correction
FE displacements are measured from an arbitrary reference defined by the structural BC. Typically a best-fit plane (BFP)
or rigid-body (R-B) motion must be removed in order for elastic distortions to be seen.  Optically this is similar to
pointing alignment.  Rigid body motions are represented by the first 3 terms in a Zernike fit1 of finite element results.
For an optic (the center segment in the example) on a elastic mount subjected to both lateral 1g load and a uniform
temperature increase, the rigid body tilt may dominate the response as shown in Table 1 and Figure 5-A.  Once the rigid
body motion has been subtracted, the elastic deformation can be seen in Figure 5-B (displacements in microns).



Table 1:  Zernike fit to an optic subjected to 1g lateral and +55C uniform temperature

  ==============================================================================
  Sigmadyne, Inc.       SigFit  Version=06/28/01           10-Jul-01  15:49:45
  ------------------------------------------------------------------------------
  HEXAGONAL ADAPTIVE MIRROR W TITANIUM MOUNT
  LOADS = +55C AND 1G -Y
  ------------------------------------------------------------------------------
  INPUT SURFACE: Best-Fit Zernike Polynomial Coefficients

      Order    Aberration        Magnitude   Phase    Residual    Residual
     K  N  M                      (Waves)    (Deg)       RMS         P-V
               Input Surface                            2.7558     10.4293
     1  0  0   Bias                -.34905      .0      2.7374     10.4293
     2  1  1   Tilt                5.97541    90.0       .0953       .3798
     3  2  0   Power (Defocus)     -.18004      .0       .0148       .0688
     4  2  2   Pri Astigmatism      .04105     0.0       .0013       .0053
     5  3  1   Pri Coma             .00076    90.0       .0012       .0053
     6  3  3   Pri Trefoil          .00062    30.0       .0012       .0053
     7  4  0   Pri Spherical       -.00019      .0       .0012       .0050
     8  4  2   Sec Astigmatism      .00412    90.0       .0004       .0033
     9  4  4   Pri Tetrafoil        .00149     0.0       .0003       .0015
    10  5  1   Sec Coma             .00028   -90.0       .0002       .0015
    11  5  3   Sec Trefoil          .00019   -30.0       .0002       .0015
    12  5  5   Pri Pentafoil        .00039    18.0       .0002       .0011
    13  6  0   Sec Spherical        .00000      .0       .0002       .0011
    14  6  2   Ter Astigmatism      .00019     0.0       .0002       .0012
    15  6  4   Sec Tetrafoil        .00009     0.0       .0002       .0012

..... truncated

 
Figure 5-A: Mirror Displacement Contours Figure 5-B: Mirror with Rigid Body Removed
RMS=2.7 microns RMS=0.095 microns



2.3 RoC or Power Removal
In many situations it is desired that either the best-fit
radius of curvature (RoC) or the best-fit power be
removed from the surface deformation description.
Power shall henceforth be defined as the Z05 Born and
Wolf2 or the Z04 fringe Zernike term, 2ρ2-1.  Example
situations where power or radius of curvature change
would be removed from surface deformation data
include the following:

• the optical performance budget tracks radius of
curvature or power changes separately from
wavefront error

• an optical test is to be simulated in which the effects
of bias and power are unobservable

• an optical system which images an object at infinity
has capability to refocus thus removing power from
a reflective surface placed at the aperture stop

When power is removed from surface in Figure 5-B, the
astigmatism becomes apparent in Figure 5-C.

3.0 ADAPTIVE CORRECTABILITY

3.1 Actuators
Actuators are used to displace (rigid-body) and distort an optic.  Typically, the purpose is to correct pointing errors and
surface aberrations due to fabrication and assembly errors, thermoelastic distortion, atmospheric disturbance or dynamic
response.  There are two common types of actuators in use, force (including moment) and displacement (including
rotation).  Their typical characteristics are as follows:

Force Actuators: Displacement Actuators:
Apply a force or moment Enforce a displacement or rotation
Example:  voice coil Example:  piezoelectric
Have negligible stiffness Have high stiffness
Produce global response Produce local response

Two common design approaches for adaptive optics in the literature are:
1) Thin faceplate mirror on a dense field of displacement actuators
2) Stiffened lightweight mirror with a lower number of force actuators

Design trade issues include:
1) Degree of correctability
2) Total weight and cost: optic + actuators + reaction structure
3) Total reliability: actuator failure effect, number actuators
4) Performance: 1g test, dynamic response, thermoelastic response

From a mathematical point of view, there is no difference between  force and displacement actuators.  In fact, for the
same mirror and placement of actuators, the correctability of perfect force and perfect displacement are the same.  The
difference comes from second order effects such as bending stiffness of displacement actuators or interaction with the
reaction structure.  In Figure 6, the actuators are "perfect" (i.e., pure normal force or pure normal displacement).  The
results of actuator correction as given in Table 2 show that the residual surface RMS is the same for both actuator types.

Figure 5-C:  Mirror with R-B and Power Removed
RMS=0.015 microns



Fig 6-A: Segment Model with Fig 6-B: Single Displacement
              22 Actuators Influece Function

Fig 6-C: Single Force Actuator Fig 6-D: Corrected 1g Surface for
Influence Function  Either Force/Displacement

Table 2: Correctability as Calculated by SigFit for Deformation Under 1g

 Displacement Actuators
    Load <--------Surface RMS (waves)-------><----Correctability (%)----->
          A)Input     B)Inpt-BFP  C)Correctd   (A-B)/A   (A-C)/A   (B-C)/B
       1  2.1444E-02  8.2222E-03  5.9258E-03    61.657    72.366    27.929

 Force Actuators
    Load <--------Surface RMS (waves)-------><----Correctability (%)----->
          A)Input     B)Inpt-BFP  C)Correctd   (A-B)/A   (A-C)/A   (B-C)/B
       1  5.1001E-01  2.2387E-01  5.9258E-03    56.105    98.838    97.353

The force actuators have a  higher percent correctability due to the high initial deformation under 1g on 3 points.
However, the corrected RMS is the same for both force and displacement actuators.

3.2 Surface Correction
Actuators are used to minimize the RMS surface error /deviation from a desired surface:

E = error = Σ wi (dii + dai )2

wi = area weighting of node i = fraction of total area
dii = input displacement at node i = unwanted disturbance
dai = actuated displacement at node i = Σ xj dxji
xj = actuator j input (force or displacement)
dxji = displacement at node i due to unit input at actuator j

Find X (the vector of all xi) which minimizes E by dE/dX = 0.  This results in a linear system:

H X = F     where    Hjk = Σ wi dxji dxki    and    Fk = Σ wi dii dxki



From the solution of X, the actuated surface da is obtained, and subsequently the corrected surface dc.

dci = corrected displacement at node i = dii + dai

The mathematical procedure is similar to fitting Zernike polynomials1.

The following surface correctability terms can be defined:
Ri = RMS of (input surface)
Rb = RMS of (input surface - BFP)
Rf = RMS of (input surface - BFP - Power)
Rc = RMS of (corrected surface = input surface + actuated surface)

Cb = Correctability due to Perfect Rigid Body Compensation =  (Ri - Rb) / Ri
Cf = Correctability due to Perfect Focus Compensation = (Rb - Rf) / Rb

Cab = Actuator Correctability after Perfect Rigid Body Compensation =  (Rb - Rc) / Rb
Caf = Actuator Correctability after Perfect Focus Compensation = (Rf - Rc) / Rf
Cat = Total Actuator Correctability = (Ri - Rc) / Ri

The total actuator correctability (Cat) can be misleading and overstate the effectiveness of deformable optics.  The true
effect of deforming (not pointing or focusing) is Caf.  If there are no external pointing or focusing mechanisms, then the
actuators are the only effect, so total actuator correctability is significant.  In this last condition, the actuator set should
include rigid body motion capability.

3.3 Example
An adaptive, segmented primary mirror with 6 petals on a mount structure was subjected to a 1g lateral load and 55C
uniform temperature increase.  Each segment has 3 displacement actuators for rigid motion control and 19 force
actuators for surface deformation control.  The correctability was determined for rigid body motion correction and for
surface deformation correction.  Figures 7-A through 7-D show the deformed surface.  Figure 7-E shows rigid body
motion correction of 3 displacement actuators/segment, Figure 7-F shows the effect of the 19 force actuators on surface
deformation control.

                     
Figure 7-A: Deformed side view Figure 7-B: Deformed iso view



         
Figure 7-C:  Input displacement (RMS=28.0) Figure 7-D: Best-Fit plane removed (RMS=11.1)

Figure 7-E: With Segment Rigid Body Motion Figure 7-F: With Surface Correction (RMS=0.003)
Correction (RMS=0.09)

3.4 Practical Analysis Issues
From a programmer's and/or analyst's viewpoint, there are several practical considerations.  The displacement vector size
depends on the number of nodes on the optical surface.  This effects the number of "rows" in each input surface and each
actuator influence function.  The number of columns is affected by the number of load cases for the input surface and the
number of actuators for the influence matrix.  Thus, array size and solution times can be an issue for highly detailed
models with a large number of actuators.

Symmetry can be used effectively to reduce matrix sizes.  In most applications, the optic and actuator arrangement have
at least 1 plane of symmetry.  If the input surface (load case) also has the same symmetry, then a symmetric model is
obvious efficiency improvement.  With a little programming effort or proper tools, full surface plots are quite easy to
obtain from symmetric sub-models.

For segmented optics, there may be no cross-talk in the actuator influence functions from segment to segment.  If that is
the case, then reduced vector sizes are possible.  Also, if the segments are identical, then the influence functions are
identical from segment to segment and can all be obtained from running a single segment.  Some programming effort is
required to take advantage of these data reduction features.



In practice, the deformable mirror's performance is determined by the number and placement of sensors.  In the
equations above, the area weighting vector was applied to all of the nodes on the surface.   In which case, the predicted
actuator inputs are those which minimize the full surface RMS.  If however, only a subset of nodes are sampled by
sensors which drive the actuators, then the actuator inputs will be those which minimize the RMS over the sampled
points.  This can be predicted mathematically by using an area weighting which is non-zero only at the sensor locations.
In SigFit, this is accomplished through a user defined area weighting vector.

A similar effect occurs in the case when pointing/focus are determined by the center segment (possibly a stiff mirror
without actuators) only.  The deformable petals are then driven to match the stiff center.  Again, this feature can be
handled through the use of a separate weighting functions for best-fit-plane and focus (center segment only) from the
corrected surface weighting function (all segments).  In SigFit, this is easily input via property numbers of the various
segments.

4.0 DYNAMIC PERFORMANCE

4.1 Analysis Issues
In the dynamic response of a segmented optic, the analyst may be interested in various measures of the surface motion.
For example,

1) the full surface average pointing error
2) the full surface RMS error (best-fit-plane removed)
3) individual segment pointing error

Each of these may have an individual line item error budget, and they may each have a separate method of reducing the
response through improved design or adaptive/active control.  To obtain these responses, special modeling techniques
and tools are required.

4.2 Frequency Response
Frequency response analysis is the prediction of structural behavior to a steady-state harmonic input. A common solution
approach for large problems is to use the modal method4.  In this technique, we first solve for undamped natural
frequencies from,

[ ] [ ]( ) 02 =Φ+− jj KMω   , 4.2 (1)

where, Φ j is the eigenvector for the jth mode, ω j
2 is the eigenvalue, (2 π fj)2, for the jth mode, M is the mass matrix, and

K is the stiffness matrix.  The modal approach creates uncoupled equations of motion by the substitution,

jizU Φ∑=    , 4.2 (2)

where, zj is the modal coordinate representing the response of mode j.  Any physical response such as displacement or
stress is then the scaled combination of such responses from the modal analysis.  Equation 4.2 (2) would be used to
recover displacements and stresses would be recovered with,

jSiz∑=σ 4.2 (3)

where, Sj is the modal stress for the jth mode.

For optical performance calculation, efficiencies can be realized using the modal approach. If each mode j be
decomposed into,

Tj = pointing vector (R-B or BFP) for the jth mode
Pj = power for the jth mode
Vj = the residual vector for the jth mode = Φ j -BFP - power

then, the net surface pointing error and the net surface power are obtained from,



jjn TzT ∑= jjn PzP ∑= 4.2 (4a ,4b)

and the net surface RMS is obtained from the combined residual vectors,

( )∑= jjn VzRMSRMS . 4.2 (5)

In all of these calculations, care must be taken because z is a complex quantity.  For
typical sine sweep analyses with many frequency steps and relatively few modes, the
modal approach using these decompositions is more efficient than direct solution
techniques.

For individual segment pointing error, a modeling trick may be used. An interpolation
element (RBE3) should be constructed connecting all nodes on the optical surface
with an average surface point for each individual segment. A rigid link connects each
average surface point to its own individual focus point located at the center of
curvature or focal point.  Under dynamic distortion the motions of  the individual
focus points can be processed to measure the mismatch of segment pointing or "blur"
(Fig 8).  Again, this can be made more efficient using the modal approach.

4.3 Random Response
The sine sweep response from a frequency response analysis is called a transfer
function, or frequency response function, FRF, and is the forcing frequency
dependent magnitude of the complex response.  In random response, the statistical
nature of the load is given as a  load power spectral density, PSDP.  The statistical
nature of output is found as a response power spectral density, PSDR, from the
equation,

pR PSDFRFPSD 2= 4.3 (1)

The temporal RMS of the response is given as,

ARMSR = 4.3 (2)

where, A is the area under the PSDR curve.

Common response levels used in performance predictions are as follows:

1σ = 1 x RMS value => response is less than 1σ for 68.3% of the time
3σ = 3 x RMS value => response is less than 3σ for 99.7% of the time

For image motion or average surface pointing under random loading:

1) Include a multipoint constraint (MPC) for image motion or BFP in model
2) Run random analysis in FE program, output 1σ of image motion/BFP

or
1) Calculate natural frequencies and mode shapes Φ
2) Use modal techniques to find each optic motion at each frequency step
3) At each frequency step, calculate image motion response (FRF)
4) At each frequency step, calculate PSDR of image motion
5) Find the square-root of the area under the PSDR response curve to get the 1σ value

In the calculation of the 1σ value of surface RMS, all sign and phasing information has been lost due to the use of the
FRF, which is the magnitude of the frequency dependent complex response. Therefore, it is not correct to find 1σ motion
of each optic then combine to find image motion.

For optical surface RMS under random loading:

Figure 8: Segment pointing



1) Calculate natural frequencies and mode shapes Φ
2) Calculate and subtract rigid-body motions if desired
3) Use modal techniques to find surface displacements at each frequency step
4) At each frequency step, calculate surface RMS response (FRF)
5) At each frequency step, calculate PSDR of surface RMS
6) Integrate under PSDR response and square-root, to get 1σ value of surface RMS

As was the case with the image motion calculation, the 1σ values have lost all sign and phasing information, so it is not
correct to find 1σ of each node then combine to find surface RMS.

If this calculation is also performed for each mode individually, each mode’s fractional contribution to the total pointing
and surface RMS random response is determined. This allows the analyst to identify problem mode shapes which should
be considered during improvement of the design.

When the mounted, segmented mirror discussed above is given a random vertical (Z) base shake with a PSD input
shown (Fig 9-A), then the surface RMS has a 1-sigma random response of  0.67 microns (Fig 9-B).

                    
  Figure 9-A  PSD Input (g2/Hz)                  Fig 9-B PSD Surface RMS Z shake       Fig 9-C  PSD Surface RMS Y shake

The random  response analysis was conducted in SigFit using modal methods. The printed output from SigFit in Table 3
shows that 70% of the response was due to Mode 6 and 30% due to Mode 9.  Figures 10-A and 10-B show deformed
plots of these modes.

Table 3: Modal Contributions to Surface RMS random response due to vertical (Z) base shake

  Each modes % contribution to PSD for Surface=  1
  Mode      Freq  RB-Tx  RB-Ty  RB-Tz  RB-Rx  RB-Ry  d-Pow  d-Bia  S-RMS  R-RMS
     4     51.73 13.579  0.000  0.000  0.000 31.525  0.000  0.000  0.000  0.000
     5     51.74  2.480   .473  0.000  4.284  5.887  0.000  0.000  0.000  0.000
     6     57.88 27.688   .105 99.996 61.036  5.884 99.996 99.996 69.772 99.996
     7     59.46 16.025  0.000  0.000  0.000 31.521  0.000  0.000  0.000  0.000
     8     59.46 11.307  2.323  0.000 17.860 22.944  0.000  0.000   .001  0.000
     9     62.42   .220  6.475   .004  1.340  1.146   .004   .004 30.225   .004
    10     72.00   .032  0.000  0.000  0.000   .011  0.000  0.000  0.000  0.000
    11     74.45   .797  0.000  0.000  0.000   .038  0.000  0.000  0.000  0.000
    12     74.46 14.459 42.780  0.000  6.505   .335  0.000  0.000   .001  0.000
    13     74.46  1.606  0.000  0.000  0.000   .064  0.000  0.000  0.000  0.000
    14     74.63   .598 39.659  0.000  8.931   .005  0.000  0.000   .001  0.000
    15     74.63 10.889  0.000  0.000  0.000   .639  0.000  0.000  0.000  0.000
    16    109.22   .003  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
    17    113.17   .022  2.656  0.000   .037  0.000  0.000  0.000  0.000  0.000
    18    113.18   .122  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000

..... truncated



For a horizontal base shake (Y direction) of the same magnitude, the surface had a 1-sigma response of  2.0 microns (Fig
9-C).  Several modes had a significant contribution as shown in the printed output from SigFit in Table 4.

Table 4: Modal Contributions to Surface RMS random response due to horizontal (Y) base shake

  Each modes % contribution to PSD for Surface=  1
  Mode      Freq  RB-Tx  RB-Ty  RB-Tz  RB-Rx  RB-Ry  d-Pow  d-Bia  S-RMS  R-RMS
     4     51.73 48.771  0.000  0.000  0.000 49.239  0.000  0.000  0.000  0.000
     5     51.74 48.135 15.758   .820 96.622 49.691 12.424 12.425 17.788  9.441
     6     57.88  0.000  0.000  1.516  0.000  0.000  4.106  4.106  0.000  0.000
     7     59.46   .612  0.000  0.000  0.000   .523  0.000  0.000  0.000  0.000
     8     59.46   .595   .210  6.566  1.093   .525  8.222  8.223 13.670   .230
     9     62.42  0.000  0.000  4.624  0.000  0.000 12.843 12.844  0.000  0.000
    10     72.00  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
    11     74.45  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
    12     74.46   .453  2.298 42.194   .237   .005 29.841 29.840 15.974  3.507
    13     74.46   .566  0.000  0.000  0.000   .010  0.000  0.000  0.000  0.000
    14     74.63   .078  8.832 34.942  1.347  0.000 30.921 30.920 28.378 15.761
    15     74.63   .111  0.000  0.000  0.000   .003  0.000  0.000  0.000  0.000
    16    109.22  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
    17    113.17   .341 71.573  3.126   .668   .003   .191   .191 22.041 69.638
    18    113.18   .333  0.000  0.000  0.000   .001  0.000  0.000  0.000  0.000
..... truncated

4.4 Transient Response
Transient response is determined by solving by numerical integration the dynamics equation,

[ ]{ } []{ } [ ]{ } { })(tPUKUBUM =++ &&& . 4.4 (1)

Either the direct method or modal method may be used.  As with frequency response, the modal method is more efficient
on many problems.   As in the modal method for frequency response, the pointing, focus and residual terms can be
determined for each mode shape and added using modal addition.  In a transient response, the user may want curves of
response over the time range of interest, or more often, just the peak values.  In SigFit, every peak response is identified
along with it's time of occurrence.

5.0 SUMMARY

Standard finite element results are usually not in a convenient form for opto-mechanical analysis.  The output must be
post-processed to decompose the displacements into rigid-body motion, power, and higher order aberrations.  In the
presence of radial motion, the finite element displacements must be used to compute scalar surface deviation before
optical quantities are calculated.  Segmented optics present unique post-processing challenges, since it is often useful to
determine assembly pointing and wavefront error as well as individual segment pointing and wavefront errors.  With
adaptive optics, the interest is in understanding and maximizing the correctability of the system.  The dynamic analysis
of optics usually requires similar decomposition into rigid body motion and wavefront error, but requires efficient
algorithms to handle the many analysis steps.  Typically, specialized post-processing software is required.
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